Initial commit

This commit is contained in:
domenico
2025-06-24 15:51:28 +02:00
commit 22031d9dab
6862 changed files with 1462554 additions and 0 deletions

View File

@@ -0,0 +1,15 @@
if TARGET_OX820
config SYS_CPU
default "arm1136"
config SYS_SOC
default "nas782x"
config SYS_BOARD
default "ox820"
config SYS_CONFIG_NAME
default "ox820"
endif

View File

@@ -0,0 +1,6 @@
SHEEVAPLUG BOARD
M: Daniel Golle <daniel@makrotopia.org>
S: Maintained
F: board/ox820/
F: include/configs/ox820.h
F: configs/ox820_defconfig

View File

@@ -0,0 +1,15 @@
#
# (C) Copyright 2000-2006
# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
#
# (C) Copyright 2008-2009 Freescale Semiconductor, Inc.
#
# SPDX-License-Identifier: GPL-2.0+
#
obj-y += ox820.o
obj-y += lowlevel_init.o
obj-$(CONFIG_SPL_BUILD) += spl_start.o
obj-$(CONFIG_SPL_BUILD) += ddr.o

View File

@@ -0,0 +1,477 @@
/*******************************************************************
*
* File: ddr_oxsemi.c
*
* Description: Declarations for DDR routines and data objects
*
* Author: Julien Margetts
*
* Copyright: Oxford Semiconductor Ltd, 2009
*/
#include <common.h>
#include <asm/arch/clock.h>
#include "ddr.h"
typedef unsigned int UINT;
// DDR TIMING PARAMETERS
typedef struct {
unsigned int holdoff_cmd_A;
unsigned int holdoff_cmd_ARW;
unsigned int holdoff_cmd_N;
unsigned int holdoff_cmd_LM;
unsigned int holdoff_cmd_R;
unsigned int holdoff_cmd_W;
unsigned int holdoff_cmd_PC;
unsigned int holdoff_cmd_RF;
unsigned int holdoff_bank_R;
unsigned int holdoff_bank_W;
unsigned int holdoff_dir_RW;
unsigned int holdoff_dir_WR;
unsigned int holdoff_FAW;
unsigned int latency_CAS;
unsigned int latency_WL;
unsigned int recovery_WR;
unsigned int width_update;
unsigned int odt_offset;
unsigned int odt_drive_all;
unsigned int use_fixed_re;
unsigned int delay_wr_to_re;
unsigned int wr_slave_ratio;
unsigned int rd_slave_ratio0;
unsigned int rd_slave_ratio1;
} T_DDR_TIMING_PARAMETERS;
// DDR CONFIG PARAMETERS
typedef struct {
unsigned int ddr_mode;
unsigned int width;
unsigned int blocs;
unsigned int banks8;
unsigned int rams;
unsigned int asize;
unsigned int speed;
unsigned int cmd_mode_wr_cl_bl;
} T_DDR_CONFIG_PARAMETERS;
//cmd_mode_wr_cl_bl
//when SDR : cmd_mode_wr_cl_bl = 0x80200002 + (latency_CAS_RAM * 16) + (recovery_WR - 1) * 512; -- Sets write rec XX, CL=XX; BL=8
//else cmd_mode_wr_cl_bl = 0x80200003 + (latency_CAS_RAM * 16) + (recovery_WR - 1) * 512; -- Sets write rec XX, CL=XX; BL=8
// cmd_ bank_ dir_ lat_ rec_ width_ odt_ odt_ fix delay ratio
// A F C update offset all re re_to_we w r0 r1
// R L P R R W A A W W
//Timing Parameters A W N M R W C F R W W R W S L R
static const T_DDR_TIMING_PARAMETERS C_TP_DDR2_25E_CL5_1GB = { 4, 5, 0, 2, 4, 4,
5, 51, 23, 24, 9, 11, 18, 5, 4, 6, 3, 2, 0, 1, 2, 75, 56, 56 }; //elida device.
static const T_DDR_TIMING_PARAMETERS C_TP_DDR2_25E_CL5_2GB = { 4, 5, 0, 2, 4, 4,
5, 79, 22, 24, 9, 11, 20, 5, 4, 6, 3, 2, 0, 1, 2, 75, 56, 56 };
static const T_DDR_TIMING_PARAMETERS C_TP_DDR2_25_CL6_1GB = { 4, 5, 0, 2, 4, 4,
4, 51, 22, 26, 10, 12, 18, 6, 5, 6, 3, 2, 0, 1, 2, 75, 56, 56 }; // 400MHz, Speedgrade 25 timings (1Gb parts)
// D B B R A S
// D W L K A S P
//Config Parameters R D C 8 M Z D CMD_MODE
//static const T_DDR_CONFIG_PARAMETERS C_CP_DDR2_25E_CL5 = { 2,16, 1, 0, 1, 32,25,0x80200A53}; // 64 MByte
static const T_DDR_CONFIG_PARAMETERS C_CP_DDR2_25E_CL5 = { 2, 16, 1, 1, 1, 64,
25, 0x80200A53 }; // 128 MByte
static const T_DDR_CONFIG_PARAMETERS C_CP_DDR2_25_CL6 = { 2, 16, 1, 1, 1, 128,
25, 0x80200A63 }; // 256 MByte
static void ddr_phy_poll_until_locked(void)
{
volatile UINT reg_tmp = 0;
volatile UINT locked = 0;
//Extra read to put in delay before starting to poll...
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY2; // read
//POLL C_DDR_PHY2_REG register until clock and flock
//!!! Ideally have a timeout on this.
while (locked == 0) {
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY2; // read
//locked when bits 30 and 31 are set
if (reg_tmp & 0xC0000000) {
locked = 1;
}
}
}
static void ddr_poll_until_not_busy(void)
{
volatile UINT reg_tmp = 0;
volatile UINT busy = 1;
//Extra read to put in delay before starting to poll...
reg_tmp = *(volatile UINT *) C_DDR_STAT_REG; // read
//POLL DDR_STAT register until no longer busy
//!!! Ideally have a timeout on this.
while (busy == 1) {
reg_tmp = *(volatile UINT *) C_DDR_STAT_REG; // read
//when bit 31 is clear - core is no longer busy
if ((reg_tmp & 0x80000000) == 0x00000000) {
busy = 0;
}
}
}
static void ddr_issue_command(int commmand)
{
*(volatile UINT *) C_DDR_CMD_REG = commmand;
ddr_poll_until_not_busy();
}
static void ddr_timing_initialisation(
const T_DDR_TIMING_PARAMETERS *ddr_timing_parameters)
{
volatile UINT reg_tmp = 0;
/* update the DDR controller registers for timing parameters */
reg_tmp = (ddr_timing_parameters->holdoff_cmd_A << 0);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_ARW << 4);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_N << 8);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_LM << 12);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_R << 16);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_W << 20);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_PC << 24);
*(volatile UINT *) C_DDR_REG_TIMING0 = reg_tmp;
reg_tmp = (ddr_timing_parameters->holdoff_cmd_RF << 0);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_bank_R << 8);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_bank_W << 16);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_dir_RW << 24);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_dir_WR << 28);
*(volatile UINT *) C_DDR_REG_TIMING1 = reg_tmp;
reg_tmp = (ddr_timing_parameters->latency_CAS << 0);
reg_tmp = reg_tmp + (ddr_timing_parameters->latency_WL << 4);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_FAW << 8);
reg_tmp = reg_tmp + (ddr_timing_parameters->width_update << 16);
reg_tmp = reg_tmp + (ddr_timing_parameters->odt_offset << 21);
reg_tmp = reg_tmp + (ddr_timing_parameters->odt_drive_all << 24);
*(volatile UINT *) C_DDR_REG_TIMING2 = reg_tmp;
/* Program the timing parameters in the PHY too */
reg_tmp = (ddr_timing_parameters->use_fixed_re << 16)
| (ddr_timing_parameters->delay_wr_to_re << 8)
| (ddr_timing_parameters->latency_WL << 4)
| (ddr_timing_parameters->latency_CAS << 0);
*(volatile UINT *) C_DDR_REG_PHY_TIMING = reg_tmp;
reg_tmp = ddr_timing_parameters->wr_slave_ratio;
*(volatile UINT *) C_DDR_REG_PHY_WR_RATIO = reg_tmp;
reg_tmp = ddr_timing_parameters->rd_slave_ratio0;
reg_tmp += ddr_timing_parameters->rd_slave_ratio1 << 8;
*(volatile UINT *) C_DDR_REG_PHY_RD_RATIO = reg_tmp;
}
static void ddr_normal_initialisation(
const T_DDR_CONFIG_PARAMETERS *ddr_config_parameters, int mhz)
{
int i;
volatile UINT tmp = 0;
volatile UINT reg_tmp = 0;
volatile UINT emr_cmd = 0;
UINT refresh;
//Total size of memory in Mbits...
tmp = ddr_config_parameters->rams * ddr_config_parameters->asize
* ddr_config_parameters->width;
//Deduce value to program into DDR_CFG register...
switch (tmp) {
case 16:
reg_tmp = 0x00020000 * 1;
break;
case 32:
reg_tmp = 0x00020000 * 2;
break;
case 64:
reg_tmp = 0x00020000 * 3;
break;
case 128:
reg_tmp = 0x00020000 * 4;
break;
case 256:
reg_tmp = 0x00020000 * 5;
break;
case 512:
reg_tmp = 0x00020000 * 6;
break;
case 1024:
reg_tmp = 0x00020000 * 7;
break;
case 2048:
reg_tmp = 0x00020000 * 8;
break;
default:
reg_tmp = 0; //forces sims not to work if badly configured
}
//Memory width
tmp = ddr_config_parameters->rams * ddr_config_parameters->width;
switch (tmp) {
case 8:
reg_tmp = reg_tmp + 0x00400000;
break;
case 16:
reg_tmp = reg_tmp + 0x00200000;
break;
case 32:
reg_tmp = reg_tmp + 0x00000000;
break;
default:
reg_tmp = 0; //forces sims not to work if badly configured
}
//Setup DDR Mode
switch (ddr_config_parameters->ddr_mode) {
case 0:
reg_tmp = reg_tmp + 0x00000000;
break; //SDR
case 1:
reg_tmp = reg_tmp + 0x40000000;
break; //DDR
case 2:
reg_tmp = reg_tmp + 0x80000000;
break; //DDR2
default:
reg_tmp = 0; //forces sims not to work if badly configured
}
//Setup Banks
if (ddr_config_parameters->banks8 == 1) {
reg_tmp = reg_tmp + 0x00800000;
}
//Program DDR_CFG register...
*(volatile UINT *) C_DDR_CFG_REG = reg_tmp;
//Configure PHY0 reg - se_mode is bit 1,
//needs to be 1 for DDR (single_ended drive)
switch (ddr_config_parameters->ddr_mode) {
case 0:
reg_tmp = 2 + (0 << 4);
break; //SDR
case 1:
reg_tmp = 2 + (4 << 4);
break; //DDR
case 2:
reg_tmp = 0 + (4 << 4);
break; //DDR2
default:
reg_tmp = 0;
}
//Program DDR_PHY0 register...
*(volatile UINT *) C_DDR_REG_PHY0 = reg_tmp;
//Read DDR_PHY* registers to exercise paths for vcd
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY3;
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY2;
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY1;
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY0;
//Start up sequences - Different dependant on DDR mode
switch (ddr_config_parameters->ddr_mode) {
case 2: //DDR2
//Start-up sequence: follows procedure described in Micron datasheet.
//start up DDR PHY DLL
reg_tmp = 0x00022828; // dll on, start point and inc = h28
*(volatile UINT *) C_DDR_REG_PHY2 = reg_tmp;
reg_tmp = 0x00032828; // start on, dll on, start point and inc = h28
*(volatile UINT *) C_DDR_REG_PHY2 = reg_tmp;
ddr_phy_poll_until_locked();
udelay(200); //200us
//Startup SDRAM...
//!!! Software: CK should be running for 200us before wake-up
ddr_issue_command( C_CMD_WAKE_UP);
ddr_issue_command( C_CMD_NOP);
ddr_issue_command( C_CMD_PRECHARGE_ALL);
ddr_issue_command( C_CMD_DDR2_EMR2);
ddr_issue_command( C_CMD_DDR2_EMR3);
emr_cmd = C_CMD_DDR2_EMR1 + C_CMD_ODT_75 + C_CMD_REDUCED_DRIVE
+ C_CMD_ENABLE_DLL;
ddr_issue_command(emr_cmd);
//Sets CL=3; BL=8 but also reset DLL to trigger a DLL initialisation...
udelay(1); //1us
ddr_issue_command(
ddr_config_parameters->cmd_mode_wr_cl_bl
+ C_CMD_RESET_DLL);
udelay(1); //1us
//!!! Software: Wait 200 CK cycles before...
//for(i=1; i<=2; i++) {
ddr_issue_command(C_CMD_PRECHARGE_ALL);
// !!! Software: Wait here at least 8 CK cycles
//}
//need a wait here to ensure PHY DLL lock before the refresh is issued
udelay(1); //1us
for (i = 1; i <= 2; i++) {
ddr_issue_command( C_CMD_AUTO_REFRESH);
//!!! Software: Wait here at least 8 CK cycles to satify tRFC
udelay(1); //1us
}
//As before but without 'RESET_DLL' bit set...
ddr_issue_command(ddr_config_parameters->cmd_mode_wr_cl_bl);
udelay(1); //1us
// OCD commands
ddr_issue_command(emr_cmd + C_CMD_MODE_DDR2_OCD_DFLT);
ddr_issue_command(emr_cmd + C_CMD_MODE_DDR2_OCD_EXIT);
break;
default:
break; //Do nothing
}
//Enable auto-refresh
// 8192 Refreshes required every 64ms, so maximum refresh period is 7.8125 us
// We have a 400 MHz DDR clock (2.5ns period) so max period is 3125 cycles
// Our core now does 8 refreshes in a go, so we multiply this period by 8
refresh = (64000 * mhz) / 8192; // Refresh period in clocks
reg_tmp = *(volatile UINT *) C_DDR_CFG_REG; // read
#ifdef BURST_REFRESH_ENABLE
reg_tmp |= C_CFG_REFRESH_ENABLE | (refresh * 8);
reg_tmp |= C_CFG_BURST_REFRESH_ENABLE;
#else
reg_tmp |= C_CFG_REFRESH_ENABLE | (refresh * 1);
reg_tmp &= ~C_CFG_BURST_REFRESH_ENABLE;
#endif
*(volatile UINT *) C_DDR_CFG_REG = reg_tmp;
//Verify register contents
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY2; // read
//printf("Warning XXXXXXXXXXXXXXXXXXXXXX - get bad read data from C_DDR_PHY2_REG, though it looks OK on bus XXXXXXXXXXXXXXXXXX");
//TBD Check_data (read_data, dll_reg, "Error: bad C_DDR_PHY2_REG read", tb_pass);
reg_tmp = *(volatile UINT *) C_DDR_CFG_REG; // read
//TBD Check_data (read_data, cfg_reg, "Error: bad DDR_CFG read", tb_pass);
//disable optimised wrapping
if (ddr_config_parameters->ddr_mode == 2) {
reg_tmp = 0xFFFF0000;
*(volatile UINT *) C_DDR_REG_IGNORE = reg_tmp;
}
//enable midbuffer followon
reg_tmp = *(volatile UINT *) C_DDR_ARB_REG; // read
reg_tmp = 0xFFFF0000 | reg_tmp;
*(volatile UINT *) C_DDR_ARB_REG = reg_tmp;
// Enable write behind coherency checking for all clients
reg_tmp = 0xFFFF0000;
*(volatile UINT *) C_DDR_AHB4_REG = reg_tmp;
//Wait for 200 clock cycles for SDRAM DLL to lock...
udelay(1); //1us
}
// Function used to Setup DDR core
void ddr_setup(int mhz)
{
static const T_DDR_TIMING_PARAMETERS *ddr_timing_parameters =
&C_TP_DDR2_25_CL6_1GB;
static const T_DDR_CONFIG_PARAMETERS *ddr_config_parameters =
&C_CP_DDR2_25_CL6;
//Bring core out of Reset
*(volatile UINT *) C_DDR_BLKEN_REG = C_BLKEN_DDR_ON;
//DDR TIMING INITIALISTION
ddr_timing_initialisation(ddr_timing_parameters);
//DDR NORMAL INITIALISATION
ddr_normal_initialisation(ddr_config_parameters, mhz);
// route all writes through one client
*(volatile UINT *) C_DDR_TRANSACTION_ROUTING = (0
<< DDR_ROUTE_CPU0_INSTR_SHIFT)
| (1 << DDR_ROUTE_CPU0_RDDATA_SHIFT)
| (3 << DDR_ROUTE_CPU0_WRDATA_SHIFT)
| (2 << DDR_ROUTE_CPU1_INSTR_SHIFT)
| (3 << DDR_ROUTE_CPU1_RDDATA_SHIFT)
| (3 << DDR_ROUTE_CPU1_WRDATA_SHIFT);
//Bring all clients out of reset
*(volatile UINT *) C_DDR_BLKEN_REG = C_BLKEN_DDR_ON + 0x0000FFFF;
}
void set_ddr_timing(unsigned int w, unsigned int i)
{
unsigned int reg;
unsigned int wnow = 16;
unsigned int inow = 32;
/* reset all timing controls to known value (31) */
writel(DDR_PHY_TIMING_W_RST | DDR_PHY_TIMING_I_RST, DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_W_RST | DDR_PHY_TIMING_I_RST | DDR_PHY_TIMING_CK,
DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_W_RST | DDR_PHY_TIMING_I_RST, DDR_PHY_TIMING);
/* step up or down read delay to the requested value */
while (wnow != w) {
if (wnow < w) {
reg = DDR_PHY_TIMING_INC;
wnow++;
} else {
reg = 0;
wnow--;
}
writel(DDR_PHY_TIMING_W_CE | reg, DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_CK | DDR_PHY_TIMING_W_CE | reg,
DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_W_CE | reg, DDR_PHY_TIMING);
}
/* now write delay */
while (inow != i) {
if (inow < i) {
reg = DDR_PHY_TIMING_INC;
inow++;
} else {
reg = 0;
inow--;
}
writel(DDR_PHY_TIMING_I_CE | reg, DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_CK | DDR_PHY_TIMING_I_CE | reg,
DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_I_CE | reg, DDR_PHY_TIMING);
}
}
//Function used to Setup SDRAM in DDR/SDR mode
void init_ddr(int mhz)
{
/* start clocks */
enable_clock(SYS_CTRL_CLK_DDRPHY);
enable_clock(SYS_CTRL_CLK_DDR);
enable_clock(SYS_CTRL_CLK_DDRCK);
/* bring phy and core out of reset */
reset_block(SYS_CTRL_RST_DDR_PHY, 0);
reset_block(SYS_CTRL_RST_DDR, 0);
/* DDR runs at half the speed of the CPU */
ddr_setup(mhz >> 1);
return;
}

View File

@@ -0,0 +1,148 @@
/*******************************************************************
*
* File: ddr_oxsemi.h
*
* Description: Declarations for DDR routines and data objects
*
* Author: Julien Margetts
*
* Copyright: Oxford Semiconductor Ltd, 2009
*/
void ddr_oxsemi_setup(int mhz);
/* define to refresh in bursts of 8 */
#define BURST_REFRESH_ENABLE
#define DDR_BASE 0x44700000
#define C_DDR_CFG_REG (DDR_BASE + 0x00)
#define C_CFG_DDR 0x80000000
#define C_CFG_SDR 0x00000000
#define C_CFG_WIDTH8 0x00200000
#define C_CFG_WIDTH16 0x00100000
#define C_CFG_WIDTH32 0x00000000
#define C_CFG_SIZE_FACTOR 0x00020000
#define C_CFG_REFRESH_ENABLE 0x00010000
#define C_CFG_BURST_REFRESH_ENABLE 0x01000000
#define C_CFG_SIZE(x) (x << 17)
#define CFG_SIZE_2MB 1
#define CFG_SIZE_4MB 2
#define CFG_SIZE_8MB 3
#define CFG_SIZE_16MB 4
#define CFG_SIZE_32MB 5
#define CFG_SIZE_64MB 6
#define CFG_SIZE_128MB 7
#define C_DDR_BLKEN_REG (DDR_BASE + 0x04)
#define C_BLKEN_DDR_ON 0x80000000
#define C_DDR_STAT_REG (DDR_BASE + 0x08)
#define C_DDR_CMD_REG (DDR_BASE + 0x0C)
#define C_CMD_SEND_COMMAND (1UL << 31) | (1 << 21) // RAS/CAS/WE/CS all low(active), CKE High, indicates
#define C_CMD_WAKE_UP 0x80FC0000 // Asserts CKE
#define C_CMD_MODE_SDR 0x80200022 // Sets CL=2 BL=4
#define C_CMD_MODE_DDR 0x80200063 // Sets CL=2.5 BL=8
#define C_CMD_RESET_DLL 0x00000100 // A8=1 Use in conjunction with C_CMD_MODE_DDR
#define C_CMD_PRECHARGE_ALL 0x80280400
#define C_CMD_AUTO_REFRESH 0x80240000
#define C_CMD_SELF_REFRESH 0x80040000 // As AUTO-REFRESH but with CKE low
#define C_CMD_NOP 0x803C0000 // NOP just to insert guaranteed delay
#define C_CMD_DDR2_EMR1 0x80210000 // Load extended mode register 1 with zeros (for init), CKE still set
//#define C_CMD_DDR2_EMR1 0x80210400 // Load extended mode register 1 with zeros (for init), CKE still set
#define C_CMD_ENABLE_DLL 0x00000000 // Values used in conjuction with C_CMD_DDR2_EMR1
#define C_CMD_DISABLE_DLL 0x00000001
#define C_CMD_REDUCED_DRIVE 0x00000002
#define C_CMD_ODT_DISABLED 0x00000000
#define C_CMD_ODT_50 0x00000044
#define C_CMD_ODT_75 0x00000004
#define C_CMD_ODT_150 0x00000040
#define C_CMD_MODE_DDR2_OCD_DFLT 0x00000380
#define C_CMD_MODE_DDR2_OCD_EXIT 0x00000000
#define C_CMD_DDR2_EMR2 0x80220000 // Load extended mode register 2 with zeros (for init), CKE still set
#define C_CMD_DDR2_EMR3 0x80230000 // Load extended mode register 3 with zeros (for init), CKE still set
#define C_DDR_AHB_REG (DDR_BASE + 0x10)
#define C_AHB_NO_RCACHES 0xFFFF0000
#define C_AHB_FLUSH_ALL_RCACHES 0x0000FFFF
#define C_AHB_FLUSH_AHB0_RCACHE 0x00000001
#define C_AHB_FLUSH_AHB1_RCACHE 0x00000002
#define C_DDR_DLL_REG (DDR_BASE + 0x14)
#define C_DLL_DISABLED 0x00000000
#define C_DLL_MANUAL 0x80000000
#define C_DLL_AUTO_OFFSET 0xA0000000
#define C_DLL_AUTO_IN_REFRESH 0xC0000000
#define C_DLL_AUTOMATIC 0xE0000000
#define C_DDR_MON_REG (DDR_BASE + 0x18)
#define C_MON_ALL 0x00000010
#define C_MON_CLIENT 0x00000000
#define C_DDR_DIAG_REG (DDR_BASE + 0x1C)
#define C_DDR_DIAG2_REG (DDR_BASE + 0x20)
#define C_DDR_IOC_REG (DDR_BASE + 0x24)
#define C_DDR_IOC_PWR_DWN (1 << 10)
#define C_DDR_IOC_SEL_SSTL (1 << 9)
#define C_DDR_IOC_CK_DRIVE(x) ((x) << 6)
#define C_DDR_IOC_DQ_DRIVE(x) ((x) << 3)
#define C_DDR_IOC_XX_DRIVE(x) ((x) << 0)
#define C_DDR_ARB_REG (DDR_BASE + 0x28)
#define C_DDR_ARB_MIDBUF (1 << 4)
#define C_DDR_ARB_LRUBANK (1 << 3)
#define C_DDR_ARB_REQAGE (1 << 2)
#define C_DDR_ARB_DATDIR (1 << 1)
#define C_DDR_ARB_DATDIR_NC (1 << 0)
#define C_TOP_ADDRESS_BIT_TEST 22
#define C_MEM_BASE C_SDRAM_BASE
#define C_MEM_TEST_BASE 0
#define C_MEM_TEST_LEN 1920
#define C_MAX_RAND_ACCESS_LEN 16
#define C_DDR_REG_IGNORE (DDR_BASE + 0x2C)
#define C_DDR_AHB4_REG (DDR_BASE + 0x44)
#define C_DDR_REG_TIMING0 (DDR_BASE + 0x34)
#define C_DDR_REG_TIMING1 (DDR_BASE + 0x38)
#define C_DDR_REG_TIMING2 (DDR_BASE + 0x3C)
#define C_DDR_REG_PHY0 (DDR_BASE + 0x48)
#define C_DDR_REG_PHY1 (DDR_BASE + 0x4C)
#define C_DDR_REG_PHY2 (DDR_BASE + 0x50)
#define C_DDR_REG_PHY3 (DDR_BASE + 0x54)
#define C_DDR_REG_GENERIC (DDR_BASE + 0x60)
#define C_OXSEMI_DDRC_SIGNATURE 0x054415AA
#define DDR_PHY_BASE (DDR_BASE + 0x80000)
#define DDR_PHY_TIMING (DDR_PHY_BASE + 0x48)
#define DDR_PHY_TIMING_CK (1 << 12)
#define DDR_PHY_TIMING_INC (1 << 13)
#define DDR_PHY_TIMING_W_CE (1 << 14)
#define DDR_PHY_TIMING_W_RST (1 << 15)
#define DDR_PHY_TIMING_I_CE (1 << 16)
#define DDR_PHY_TIMING_I_RST (1 << 17)
#define C_DDR_REG_PHY_TIMING (DDR_PHY_BASE + 0x50)
#define C_DDR_REG_PHY_WR_RATIO (DDR_PHY_BASE + 0x74)
#define C_DDR_REG_PHY_RD_RATIO (DDR_PHY_BASE + 0x78)
#define C_DDR_TRANSACTION_ROUTING (DDR_PHY_BASE + 0xC8)
#define DDR_ROUTE_CPU0_INSTR_SHIFT 0
#define DDR_ROUTE_CPU0_RDDATA_SHIFT 4
#define DDR_ROUTE_CPU0_WRDATA_SHIFT 6
#define DDR_ROUTE_CPU1_INSTR_SHIFT 8
#define DDR_ROUTE_CPU1_RDDATA_SHIFT 12
#define DDR_ROUTE_CPU1_WRDATA_SHIFT 14
unsigned int ddrc_signature(void);
void set_ddr_timing(unsigned int w, unsigned int i);
int pause(unsigned int us);
void set_ddr_sel(int val);

View File

@@ -0,0 +1,20 @@
#include <config.h>
#ifndef CONFIG_SPL_BUILD
.globl lowlevel_init
lowlevel_init:
/*
* Copy exception table to relocated address in internal SRAM
*/
ldr r0, src /* Address of exception table in flash */
ldr r1, dest /* Relocated address of exception table */
ldmia r0!, {r3-r10} /* Copy exception table and jump values from */
stmia r1!, {r3-r10} /* FLASH to relocated address */
ldmia r0!, {r3-r10}
stmia r1!, {r3-r10}
mov pc, lr
src: .word CONFIG_SYS_TEXT_BASE
dest: .word CONFIG_SRAM_BASE
#endif

View File

@@ -0,0 +1,374 @@
#include <common.h>
#include <spl.h>
#include <phy.h>
#include <netdev.h>
#include <ide.h>
#include <nand.h>
#include <asm/arch/spl.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/clock.h>
#include <asm/arch/sysctl.h>
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_SPL_BUILD
#ifdef DEBUG
#define DILIGENCE (1048576/4)
static int test_memory(u32 memory)
{
volatile u32 *read;
volatile u32 *write;
const u32 INIT_PATTERN = 0xAA55AA55;
const u32 INC_PATTERN = 0x01030507;
u32 pattern;
int check;
int i;
check = 0;
read = write = (volatile u32 *) memory;
pattern = INIT_PATTERN;
for (i = 0; i < DILIGENCE; i++) {
*write++ = pattern;
pattern += INC_PATTERN;
}
puts("testing\n");
pattern = INIT_PATTERN;
for (i = 0; i < DILIGENCE; i++) {
check += (pattern == *read++) ? 1 : 0;
pattern += INC_PATTERN;
}
return (check == DILIGENCE) ? 0 : -1;
}
#endif
void uart_init(void)
{
/* Reset UART1 */
reset_block(SYS_CTRL_RST_UART1, 1);
udelay(100);
reset_block(SYS_CTRL_RST_UART1, 0);
udelay(100);
/* Setup pin mux'ing for UART1 */
pinmux_set(PINMUX_BANK_MFA, 30, PINMUX_UARTA_SIN);
pinmux_set(PINMUX_BANK_MFA, 31, PINMUX_UARTA_SOUT);
}
extern void init_ddr(int mhz);
void board_inithw(void)
{
int plla_freq;
#ifdef DEBUG
int i;
#endif /* DEBUG */
timer_init();
uart_init();
preloader_console_init();
plla_freq = plla_set_config(CONFIG_PLLA_FREQ_MHZ);
init_ddr(plla_freq);
#ifdef DEBUG
if(test_memory(CONFIG_SYS_SDRAM_BASE)) {
puts("memory test failed\n");
} else {
puts("memory test done\n");
}
#endif /* DEBUG */
#ifdef CONFIG_SPL_BSS_DRAM_START
extern char __bss_dram_start[];
extern char __bss_dram_end[];
memset(&__bss_dram_start, 0, __bss_dram_end - __bss_dram_start);
#endif
}
void board_init_f(ulong dummy)
{
/* Set the stack pointer. */
asm volatile("mov sp, %0\n" : : "r"(CONFIG_SPL_STACK));
/* Clear the BSS. */
memset(__bss_start, 0, __bss_end - __bss_start);
/* Set global data pointer. */
gd = &gdata;
board_inithw();
board_init_r(NULL, 0);
}
u32 spl_boot_device(void)
{
return CONFIG_SPL_BOOT_DEVICE;
}
#ifdef CONFIG_SPL_BLOCK_SUPPORT
void spl_block_device_init(void)
{
ide_init();
}
#endif
#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{
/* break into full u-boot on 'c' */
return (serial_tstc() && serial_getc() == 'c');
}
#endif
void spl_display_print(void)
{
/* print a hint, so that we will not use the wrong SPL by mistake */
puts(" Boot device: " BOOT_DEVICE_TYPE "\n" );
}
void lowlevel_init(void)
{
}
#ifdef USE_DL_PREFIX
/* quick and dirty memory allocation */
static ulong next_mem = CONFIG_SPL_MALLOC_START;
void *memalign(size_t alignment, size_t bytes)
{
ulong mem = ALIGN(next_mem, alignment);
next_mem = mem + bytes;
if (next_mem > CONFIG_SYS_SDRAM_BASE + CONFIG_MIN_SDRAM_SIZE) {
printf("spl: out of memory\n");
hang();
}
return (void *)mem;
}
void free(void* mem)
{
}
#endif
#endif /* CONFIG_SPL_BUILD */
int board_early_init_f(void)
{
return 0;
}
#define STATIC_CTL_BANK0 (STATIC_CONTROL_BASE + 4)
#define STATIC_READ_CYCLE_SHIFT 0
#define STATIC_DELAYED_OE (1 << 7)
#define STATIC_WRITE_CYCLE_SHIFT 8
#define STATIC_WRITE_PULSE_SHIFT 16
#define STATIC_WRITE_BURST_EN (1 << 23)
#define STATIC_TURN_AROUND_SHIFT 24
#define STATIC_BUFFER_PRESENT (1 << 28)
#define STATIC_READ_BURST_EN (1 << 29)
#define STATIC_BUS_WIDTH8 (0 << 30)
#define STATIC_BUS_WIDTH16 (1 << 30)
#define STATIC_BUS_WIDTH32 (2 << 30)
void nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *this = mtd->priv;
unsigned long nandaddr = (unsigned long) this->IO_ADDR_W;
if (ctrl & NAND_CTRL_CHANGE) {
nandaddr &= ~(BIT(NAND_ALE_ADDR_PIN) | BIT(NAND_CLE_ADDR_PIN));
if (ctrl & NAND_CLE)
nandaddr |= BIT(NAND_CLE_ADDR_PIN);
else if (ctrl & NAND_ALE)
nandaddr |= BIT(NAND_ALE_ADDR_PIN);
this->IO_ADDR_W = (void __iomem *) nandaddr;
}
if (cmd != NAND_CMD_NONE)
writeb(cmd, (void __iomem *) nandaddr);
}
#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_BOOT_FROM_NAND)
int nand_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
udelay(chip->chip_delay);
return 1;
}
void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
for (i = 0; i < len; i++)
buf[i] = readb(chip->IO_ADDR_R);
}
void nand_dev_reset(struct nand_chip *chip)
{
writeb(NAND_CMD_RESET, chip->IO_ADDR_W + BIT(NAND_CLE_ADDR_PIN));
udelay(chip->chip_delay);
writeb(NAND_CMD_STATUS, chip->IO_ADDR_W + BIT(NAND_CLE_ADDR_PIN));
while (!(readb(chip->IO_ADDR_R) & NAND_STATUS_READY)) {
;
}
}
#else
#define nand_dev_reset(chip) /* framework will reset the chip anyway */
#define nand_read_buf NULL /* framework will provide a default one */
#define nand_dev_ready NULL /* dev_ready is optional */
#endif
int board_nand_init(struct nand_chip *chip)
{
/* Block reset Static core */
reset_block(SYS_CTRL_RST_STATIC, 1);
reset_block(SYS_CTRL_RST_STATIC, 0);
/* Enable clock to Static core */
enable_clock(SYS_CTRL_CLK_STATIC);
/* enable flash support on static bus.
* Enable static bus onto GPIOs, only CS0 */
pinmux_set(PINMUX_BANK_MFA, 12, PINMUX_STATIC_DATA0);
pinmux_set(PINMUX_BANK_MFA, 13, PINMUX_STATIC_DATA1);
pinmux_set(PINMUX_BANK_MFA, 14, PINMUX_STATIC_DATA2);
pinmux_set(PINMUX_BANK_MFA, 15, PINMUX_STATIC_DATA3);
pinmux_set(PINMUX_BANK_MFA, 16, PINMUX_STATIC_DATA4);
pinmux_set(PINMUX_BANK_MFA, 17, PINMUX_STATIC_DATA5);
pinmux_set(PINMUX_BANK_MFA, 18, PINMUX_STATIC_DATA6);
pinmux_set(PINMUX_BANK_MFA, 19, PINMUX_STATIC_DATA7);
pinmux_set(PINMUX_BANK_MFA, 20, PINMUX_STATIC_NWE);
pinmux_set(PINMUX_BANK_MFA, 21, PINMUX_STATIC_NOE);
pinmux_set(PINMUX_BANK_MFA, 22, PINMUX_STATIC_NCS);
pinmux_set(PINMUX_BANK_MFA, 23, PINMUX_STATIC_ADDR18);
pinmux_set(PINMUX_BANK_MFA, 24, PINMUX_STATIC_ADDR19);
/* Setup the static bus CS0 to access FLASH */
writel((0x3f << STATIC_READ_CYCLE_SHIFT)
| (0x3f << STATIC_WRITE_CYCLE_SHIFT)
| (0x1f << STATIC_WRITE_PULSE_SHIFT)
| (0x03 << STATIC_TURN_AROUND_SHIFT) |
STATIC_BUS_WIDTH16,
STATIC_CTL_BANK0);
chip->cmd_ctrl = nand_hwcontrol;
chip->ecc.mode = NAND_ECC_SOFT;
chip->chip_delay = 30;
chip->dev_ready = nand_dev_ready;
chip->read_buf = nand_read_buf;
nand_dev_reset(chip);
return 0;
}
int board_init(void)
{
gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
gd->bd->bi_arch_number = MACH_TYPE_OXNAS;
/* assume uart is already initialized by SPL */
#if defined(CONFIG_START_IDE)
puts("IDE: ");
ide_init();
#endif
return 0;
}
/* copied from board/evb64260/sdram_init.c */
/*
* Check memory range for valid RAM. A simple memory test determines
* the actually available RAM size between addresses `base' and
* `base + maxsize'. Some (not all) hardware errors are detected:
* - short between address lines
* - short between data lines
*/
static long int dram_size (long int *base, long int maxsize)
{
volatile long int *addr, *b = base;
long int cnt, val, save1, save2;
#define STARTVAL (CONFIG_MIN_SDRAM_SIZE / 2) /* start test at half size */
for (cnt = STARTVAL / sizeof (long); cnt < maxsize / sizeof (long);
cnt <<= 1) {
addr = base + cnt; /* pointer arith! */
save1 = *addr; /* save contents of addr */
save2 = *b; /* save contents of base */
*addr = cnt; /* write cnt to addr */
*b = 0; /* put null at base */
/* check at base address */
if ((*b) != 0) {
*addr = save1; /* restore *addr */
*b = save2; /* restore *b */
return (0);
}
val = *addr; /* read *addr */
*addr = save1;
*b = save2;
if (val != cnt) {
/* fix boundary condition.. STARTVAL means zero */
if (cnt == STARTVAL / sizeof (long))
cnt = 0;
return (cnt * sizeof (long));
}
}
return maxsize;
}
int dram_init(void)
{
gd->ram_size = dram_size((long int *)CONFIG_SYS_SDRAM_BASE,
CONFIG_MAX_SDRAM_SIZE);
return 0;
}
int board_eth_init(bd_t *bis)
{
u32 value;
/* set the pin multiplexers to enable talking to Ethernent Phys */
pinmux_set(PINMUX_BANK_MFA, 3, PINMUX_MACA_MDC);
pinmux_set(PINMUX_BANK_MFA, 4, PINMUX_MACA_MDIO);
// Ensure the MAC block is properly reset
reset_block(SYS_CTRL_RST_MAC, 1);
udelay(10);
reset_block(SYS_CTRL_RST_MAC, 0);
// Enable the clock to the MAC block
enable_clock(SYS_CTRL_CLK_MAC);
value = readl(SYS_CTRL_GMAC_CTRL);
/* Use simple mux for 25/125 Mhz clock switching */
value |= BIT(SYS_CTRL_GMAC_SIMPLE_MUX);
/* Enable GMII_GTXCLK to follow GMII_REFCLK - required for gigabit PHY */
value |= BIT(SYS_CTRL_GMAC_CKEN_GTX);
/* set auto tx speed */
value |= BIT(SYS_CTRL_GMAC_AUTOSPEED);
writel(value, SYS_CTRL_GMAC_CTRL);
return designware_initialize(MAC_BASE, PHY_INTERFACE_MODE_RGMII);
}

View File

@@ -0,0 +1,21 @@
.section .init
.globl _spl_start
_spl_start:
b _start
b _start+0x4
b _start+0x8
b _start+0xc
b _start+0x10
b _start+0x14
b _start+0x18
b _start+0x1c
.space 0x30 - (. - _spl_start)
.ascii "BOOT" /* 0x30 signature*/
.word 0x50 /* 0x34 header size itself */
.word 0 /* 0x38 */
.word 0x5000f000 /* boot report location */
.word _start /* 0x40 */
main_crc_size: .word code_size /* 0x44 filled by linker */
main_crc: .word 0 /* 0x48 fill later */
header_crc: .word 0 /* 0x4C header crc*/

View File

@@ -0,0 +1,101 @@
/*
* Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
* on behalf of DENX Software Engineering GmbH
*
* January 2004 - Changed to support H4 device
* Copyright (c) 2004-2008 Texas Instruments
*
* (C) Copyright 2002
* Gary Jennejohn, DENX Software Engineering, <garyj@denx.de>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
MEMORY
{
sram (rwx) : ORIGIN = CONFIG_SPL_TEXT_BASE, LENGTH = CONFIG_SPL_MAX_SIZE
dram : ORIGIN = CONFIG_SPL_BSS_DRAM_START, LENGTH = CONFIG_SPL_BSS_DRAM_SIZE
}
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH(arm)
ENTRY(_spl_start)
SECTIONS
{
.text.0 :
{
*(.init*)
}
/* Start of the rest of the SPL */
code_start = . ;
.text.1 :
{
*(.text*)
}
. = ALIGN(4);
.rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) }
. = ALIGN(4);
.data : {
*(.data*)
}
. = ALIGN(4);
__image_copy_end = .;
code_size = . - code_start;
.rel.dyn : {
__rel_dyn_start = .;
*(.rel*)
__rel_dyn_end = .;
}
. = ALIGN(0x800);
_end = .;
.bss.sram __rel_dyn_start (OVERLAY) : {
__bss_start = .;
*(.bss.stdio_devices)
*(.bss.serial_current)
. = ALIGN(4);
__bss_end = .;
}
.bss : {
__bss_dram_start = .;
*(.bss*)
__bss_dram_end = .;
} > dram
/DISCARD/ : { *(.bss*) }
/DISCARD/ : { *(.dynsym) }
/DISCARD/ : { *(.dynstr*) }
/DISCARD/ : { *(.dynsym*) }
/DISCARD/ : { *(.dynamic*) }
/DISCARD/ : { *(.hash*) }
/DISCARD/ : { *(.plt*) }
/DISCARD/ : { *(.interp*) }
/DISCARD/ : { *(.gnu*) }
}