Initial commit

This commit is contained in:
domenico
2025-06-24 15:51:28 +02:00
commit 22031d9dab
6862 changed files with 1462554 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,392 @@
/*
* NAND flash driver for the MikroTik RouterBoard 4xx series
*
* Copyright (C) 2008-2011 Gabor Juhos <juhosg@openwrt.org>
* Copyright (C) 2008 Imre Kaloz <kaloz@openwrt.org>
*
* This file was based on the driver for Linux 2.6.22 published by
* MikroTik for their RouterBoard 4xx series devices.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/version.h>
#include <asm/mach-ath79/ath79.h>
#include <asm/mach-ath79/rb4xx_cpld.h>
#define DRV_NAME "rb4xx-nand"
#define DRV_VERSION "0.2.0"
#define DRV_DESC "NAND flash driver for RouterBoard 4xx series"
#define RB4XX_NAND_GPIO_READY 5
#define RB4XX_NAND_GPIO_ALE 37
#define RB4XX_NAND_GPIO_CLE 38
#define RB4XX_NAND_GPIO_NCE 39
struct rb4xx_nand_info {
struct nand_chip chip;
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
struct mtd_info mtd;
#endif
};
static inline struct rb4xx_nand_info *mtd_to_rbinfo(struct mtd_info *mtd)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
return container_of(mtd, struct rb4xx_nand_info, mtd);
#else
struct nand_chip *chip = mtd_to_nand(mtd);
return container_of(chip, struct rb4xx_nand_info, chip);
#endif
}
static struct mtd_info *rbinfo_to_mtd(struct rb4xx_nand_info *nfc)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
return &nfc->mtd;
#else
return nand_to_mtd(&nfc->chip);
#endif
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
/*
* We need to use the OLD Yaffs-1 OOB layout, otherwise the RB bootloader
* will not be able to find the kernel that we load.
*/
static struct nand_ecclayout rb4xx_nand_ecclayout = {
.eccbytes = 6,
.eccpos = { 8, 9, 10, 13, 14, 15 },
.oobavail = 9,
.oobfree = { { 0, 4 }, { 6, 2 }, { 11, 2 }, { 4, 1 } }
};
#else
static int rb4xx_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
switch (section) {
case 0:
oobregion->offset = 8;
oobregion->length = 3;
return 0;
case 1:
oobregion->offset = 13;
oobregion->length = 3;
return 0;
default:
return -ERANGE;
}
}
static int rb4xx_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
switch (section) {
case 0:
oobregion->offset = 0;
oobregion->length = 4;
return 0;
case 1:
oobregion->offset = 4;
oobregion->length = 1;
return 0;
case 2:
oobregion->offset = 6;
oobregion->length = 2;
return 0;
case 3:
oobregion->offset = 11;
oobregion->length = 2;
return 0;
default:
return -ERANGE;
}
}
static const struct mtd_ooblayout_ops rb4xx_nand_ecclayout_ops = {
.ecc = rb4xx_ooblayout_ecc,
.free = rb4xx_ooblayout_free,
};
#endif /* < 4.6 */
static struct mtd_partition rb4xx_nand_partitions[] = {
{
.name = "booter",
.offset = 0,
.size = (256 * 1024),
.mask_flags = MTD_WRITEABLE,
},
{
.name = "kernel",
.offset = (256 * 1024),
.size = (4 * 1024 * 1024) - (256 * 1024),
},
{
.name = "ubi",
.offset = MTDPART_OFS_NXTBLK,
.size = MTDPART_SIZ_FULL,
},
};
static int rb4xx_nand_dev_ready(struct mtd_info *mtd)
{
return gpio_get_value_cansleep(RB4XX_NAND_GPIO_READY);
}
static void rb4xx_nand_write_cmd(unsigned char cmd)
{
unsigned char data = cmd;
int err;
err = rb4xx_cpld_write(&data, 1);
if (err)
pr_err("rb4xx_nand: write cmd failed, err=%d\n", err);
}
static void rb4xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
if (ctrl & NAND_CTRL_CHANGE) {
gpio_set_value_cansleep(RB4XX_NAND_GPIO_CLE,
(ctrl & NAND_CLE) ? 1 : 0);
gpio_set_value_cansleep(RB4XX_NAND_GPIO_ALE,
(ctrl & NAND_ALE) ? 1 : 0);
gpio_set_value_cansleep(RB4XX_NAND_GPIO_NCE,
(ctrl & NAND_NCE) ? 0 : 1);
}
if (cmd != NAND_CMD_NONE)
rb4xx_nand_write_cmd(cmd);
}
static unsigned char rb4xx_nand_read_byte(struct mtd_info *mtd)
{
unsigned char data = 0;
int err;
err = rb4xx_cpld_read(&data, 1);
if (err) {
pr_err("rb4xx_nand: read data failed, err=%d\n", err);
data = 0xff;
}
return data;
}
static void rb4xx_nand_write_buf(struct mtd_info *mtd, const unsigned char *buf,
int len)
{
int err;
err = rb4xx_cpld_write(buf, len);
if (err)
pr_err("rb4xx_nand: write buf failed, err=%d\n", err);
}
static void rb4xx_nand_read_buf(struct mtd_info *mtd, unsigned char *buf,
int len)
{
int err;
err = rb4xx_cpld_read(buf, len);
if (err)
pr_err("rb4xx_nand: read buf failed, err=%d\n", err);
}
static int rb4xx_nand_probe(struct platform_device *pdev)
{
struct rb4xx_nand_info *info;
struct mtd_info *mtd;
int ret;
printk(KERN_INFO DRV_DESC " version " DRV_VERSION "\n");
ret = gpio_request(RB4XX_NAND_GPIO_READY, "NAND RDY");
if (ret) {
dev_err(&pdev->dev, "unable to request gpio %d\n",
RB4XX_NAND_GPIO_READY);
goto err;
}
ret = gpio_direction_input(RB4XX_NAND_GPIO_READY);
if (ret) {
dev_err(&pdev->dev, "unable to set input mode on gpio %d\n",
RB4XX_NAND_GPIO_READY);
goto err_free_gpio_ready;
}
ret = gpio_request(RB4XX_NAND_GPIO_ALE, "NAND ALE");
if (ret) {
dev_err(&pdev->dev, "unable to request gpio %d\n",
RB4XX_NAND_GPIO_ALE);
goto err_free_gpio_ready;
}
ret = gpio_direction_output(RB4XX_NAND_GPIO_ALE, 0);
if (ret) {
dev_err(&pdev->dev, "unable to set output mode on gpio %d\n",
RB4XX_NAND_GPIO_ALE);
goto err_free_gpio_ale;
}
ret = gpio_request(RB4XX_NAND_GPIO_CLE, "NAND CLE");
if (ret) {
dev_err(&pdev->dev, "unable to request gpio %d\n",
RB4XX_NAND_GPIO_CLE);
goto err_free_gpio_ale;
}
ret = gpio_direction_output(RB4XX_NAND_GPIO_CLE, 0);
if (ret) {
dev_err(&pdev->dev, "unable to set output mode on gpio %d\n",
RB4XX_NAND_GPIO_CLE);
goto err_free_gpio_cle;
}
ret = gpio_request(RB4XX_NAND_GPIO_NCE, "NAND NCE");
if (ret) {
dev_err(&pdev->dev, "unable to request gpio %d\n",
RB4XX_NAND_GPIO_NCE);
goto err_free_gpio_cle;
}
ret = gpio_direction_output(RB4XX_NAND_GPIO_NCE, 1);
if (ret) {
dev_err(&pdev->dev, "unable to set output mode on gpio %d\n",
RB4XX_NAND_GPIO_ALE);
goto err_free_gpio_nce;
}
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
dev_err(&pdev->dev, "rb4xx-nand: no memory for private data\n");
ret = -ENOMEM;
goto err_free_gpio_nce;
}
info->chip.priv = &info;
mtd = rbinfo_to_mtd(info);
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
mtd->priv = &info->chip;
#endif
mtd->owner = THIS_MODULE;
info->chip.cmd_ctrl = rb4xx_nand_cmd_ctrl;
info->chip.dev_ready = rb4xx_nand_dev_ready;
info->chip.read_byte = rb4xx_nand_read_byte;
info->chip.write_buf = rb4xx_nand_write_buf;
info->chip.read_buf = rb4xx_nand_read_buf;
info->chip.chip_delay = 25;
info->chip.ecc.mode = NAND_ECC_SOFT;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,6,0)
info->chip.ecc.algo = NAND_ECC_HAMMING;
#endif
info->chip.options = NAND_NO_SUBPAGE_WRITE;
platform_set_drvdata(pdev, info);
ret = nand_scan_ident(mtd, 1, NULL);
if (ret) {
ret = -ENXIO;
goto err_free_info;
}
if (mtd->writesize == 512)
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
info->chip.ecc.layout = &rb4xx_nand_ecclayout;
#else
mtd_set_ooblayout(mtd, &rb4xx_nand_ecclayout_ops);
#endif
ret = nand_scan_tail(mtd);
if (ret) {
return -ENXIO;
goto err_set_drvdata;
}
mtd_device_register(mtd, rb4xx_nand_partitions,
ARRAY_SIZE(rb4xx_nand_partitions));
if (ret)
goto err_release_nand;
return 0;
err_release_nand:
nand_release(&info->chip);
err_set_drvdata:
platform_set_drvdata(pdev, NULL);
err_free_info:
kfree(info);
err_free_gpio_nce:
gpio_free(RB4XX_NAND_GPIO_NCE);
err_free_gpio_cle:
gpio_free(RB4XX_NAND_GPIO_CLE);
err_free_gpio_ale:
gpio_free(RB4XX_NAND_GPIO_ALE);
err_free_gpio_ready:
gpio_free(RB4XX_NAND_GPIO_READY);
err:
return ret;
}
static int rb4xx_nand_remove(struct platform_device *pdev)
{
struct rb4xx_nand_info *info = platform_get_drvdata(pdev);
nand_release(&info->chip);
platform_set_drvdata(pdev, NULL);
kfree(info);
gpio_free(RB4XX_NAND_GPIO_NCE);
gpio_free(RB4XX_NAND_GPIO_CLE);
gpio_free(RB4XX_NAND_GPIO_ALE);
gpio_free(RB4XX_NAND_GPIO_READY);
return 0;
}
static struct platform_driver rb4xx_nand_driver = {
.probe = rb4xx_nand_probe,
.remove = rb4xx_nand_remove,
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
static int __init rb4xx_nand_init(void)
{
return platform_driver_register(&rb4xx_nand_driver);
}
static void __exit rb4xx_nand_exit(void)
{
platform_driver_unregister(&rb4xx_nand_driver);
}
module_init(rb4xx_nand_init);
module_exit(rb4xx_nand_exit);
MODULE_DESCRIPTION(DRV_DESC);
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
MODULE_AUTHOR("Imre Kaloz <kaloz@openwrt.org>");
MODULE_LICENSE("GPL v2");

View File

@@ -0,0 +1,436 @@
/*
* NAND flash driver for the MikroTik RouterBOARD 750
*
* Copyright (C) 2010-2012 Gabor Juhos <juhosg@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/version.h>
#include <asm/mach-ath79/ar71xx_regs.h>
#include <asm/mach-ath79/ath79.h>
#include <asm/mach-ath79/mach-rb750.h>
#define DRV_NAME "rb750-nand"
#define DRV_VERSION "0.1.0"
#define DRV_DESC "NAND flash driver for the RouterBOARD 750"
#define RB750_NAND_IO0 BIT(RB750_GPIO_NAND_IO0)
#define RB750_NAND_ALE BIT(RB750_GPIO_NAND_ALE)
#define RB750_NAND_CLE BIT(RB750_GPIO_NAND_CLE)
#define RB750_NAND_NRE BIT(RB750_GPIO_NAND_NRE)
#define RB750_NAND_NWE BIT(RB750_GPIO_NAND_NWE)
#define RB750_NAND_RDY BIT(RB750_GPIO_NAND_RDY)
#define RB750_NAND_DATA_SHIFT 1
#define RB750_NAND_DATA_BITS (0xff << RB750_NAND_DATA_SHIFT)
#define RB750_NAND_INPUT_BITS (RB750_NAND_DATA_BITS | RB750_NAND_RDY)
#define RB750_NAND_OUTPUT_BITS (RB750_NAND_ALE | RB750_NAND_CLE | \
RB750_NAND_NRE | RB750_NAND_NWE)
struct rb750_nand_info {
struct nand_chip chip;
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
struct mtd_info mtd;
#endif
struct rb7xx_nand_platform_data *pdata;
};
static inline struct rb750_nand_info *mtd_to_rbinfo(struct mtd_info *mtd)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
return container_of(mtd, struct rb750_nand_info, mtd);
#else
struct nand_chip *chip = mtd_to_nand(mtd);
return container_of(chip, struct rb750_nand_info, chip);
#endif
}
static struct mtd_info *rbinfo_to_mtd(struct rb750_nand_info *nfc)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
return &nfc->mtd;
#else
return nand_to_mtd(&nfc->chip);
#endif
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
/*
* We need to use the OLD Yaffs-1 OOB layout, otherwise the RB bootloader
* will not be able to find the kernel that we load.
*/
static struct nand_ecclayout rb750_nand_ecclayout = {
.eccbytes = 6,
.eccpos = { 8, 9, 10, 13, 14, 15 },
.oobavail = 9,
.oobfree = { { 0, 4 }, { 6, 2 }, { 11, 2 }, { 4, 1 } }
};
#else
static int rb750_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
switch (section) {
case 0:
oobregion->offset = 8;
oobregion->length = 3;
return 0;
case 1:
oobregion->offset = 13;
oobregion->length = 3;
return 0;
default:
return -ERANGE;
}
}
static int rb750_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
switch (section) {
case 0:
oobregion->offset = 0;
oobregion->length = 4;
return 0;
case 1:
oobregion->offset = 4;
oobregion->length = 1;
return 0;
case 2:
oobregion->offset = 6;
oobregion->length = 2;
return 0;
case 3:
oobregion->offset = 11;
oobregion->length = 2;
return 0;
default:
return -ERANGE;
}
}
static const struct mtd_ooblayout_ops rb750_nand_ecclayout_ops = {
.ecc = rb750_ooblayout_ecc,
.free = rb750_ooblayout_free,
};
#endif /* < 4.6 */
static struct mtd_partition rb750_nand_partitions[] = {
{
.name = "booter",
.offset = 0,
.size = (256 * 1024),
.mask_flags = MTD_WRITEABLE,
}, {
.name = "kernel",
.offset = (256 * 1024),
.size = (4 * 1024 * 1024) - (256 * 1024),
}, {
.name = "ubi",
.offset = MTDPART_OFS_NXTBLK,
.size = MTDPART_SIZ_FULL,
},
};
static void rb750_nand_write(const u8 *buf, unsigned len)
{
void __iomem *base = ath79_gpio_base;
u32 out;
u32 t;
unsigned i;
/* set data lines to output mode */
t = __raw_readl(base + AR71XX_GPIO_REG_OE);
__raw_writel(t | RB750_NAND_DATA_BITS, base + AR71XX_GPIO_REG_OE);
out = __raw_readl(base + AR71XX_GPIO_REG_OUT);
out &= ~(RB750_NAND_DATA_BITS | RB750_NAND_NWE);
for (i = 0; i != len; i++) {
u32 data;
data = buf[i];
data <<= RB750_NAND_DATA_SHIFT;
data |= out;
__raw_writel(data, base + AR71XX_GPIO_REG_OUT);
__raw_writel(data | RB750_NAND_NWE, base + AR71XX_GPIO_REG_OUT);
/* flush write */
__raw_readl(base + AR71XX_GPIO_REG_OUT);
}
/* set data lines to input mode */
t = __raw_readl(base + AR71XX_GPIO_REG_OE);
__raw_writel(t & ~RB750_NAND_DATA_BITS, base + AR71XX_GPIO_REG_OE);
/* flush write */
__raw_readl(base + AR71XX_GPIO_REG_OE);
}
static void rb750_nand_read(u8 *read_buf, unsigned len)
{
void __iomem *base = ath79_gpio_base;
unsigned i;
for (i = 0; i < len; i++) {
u8 data;
/* activate RE line */
__raw_writel(RB750_NAND_NRE, base + AR71XX_GPIO_REG_CLEAR);
/* flush write */
__raw_readl(base + AR71XX_GPIO_REG_CLEAR);
/* read input lines */
data = __raw_readl(base + AR71XX_GPIO_REG_IN) >>
RB750_NAND_DATA_SHIFT;
/* deactivate RE line */
__raw_writel(RB750_NAND_NRE, base + AR71XX_GPIO_REG_SET);
read_buf[i] = data;
}
}
static void rb750_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct rb750_nand_info *rbinfo = mtd_to_rbinfo(mtd);
void __iomem *base = ath79_gpio_base;
u32 t;
if (chip >= 0) {
rbinfo->pdata->enable_pins();
/* set input mode for data lines */
t = __raw_readl(base + AR71XX_GPIO_REG_OE);
__raw_writel(t & ~RB750_NAND_INPUT_BITS,
base + AR71XX_GPIO_REG_OE);
/* deactivate RE and WE lines */
__raw_writel(RB750_NAND_NRE | RB750_NAND_NWE,
base + AR71XX_GPIO_REG_SET);
/* flush write */
(void) __raw_readl(base + AR71XX_GPIO_REG_SET);
/* activate CE line */
__raw_writel(rbinfo->pdata->nce_line,
base + AR71XX_GPIO_REG_CLEAR);
} else {
/* deactivate CE line */
__raw_writel(rbinfo->pdata->nce_line,
base + AR71XX_GPIO_REG_SET);
/* flush write */
(void) __raw_readl(base + AR71XX_GPIO_REG_SET);
t = __raw_readl(base + AR71XX_GPIO_REG_OE);
__raw_writel(t | RB750_NAND_IO0 | RB750_NAND_RDY,
base + AR71XX_GPIO_REG_OE);
rbinfo->pdata->disable_pins();
}
}
static int rb750_nand_dev_ready(struct mtd_info *mtd)
{
void __iomem *base = ath79_gpio_base;
return !!(__raw_readl(base + AR71XX_GPIO_REG_IN) & RB750_NAND_RDY);
}
static void rb750_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
if (ctrl & NAND_CTRL_CHANGE) {
void __iomem *base = ath79_gpio_base;
u32 t;
t = __raw_readl(base + AR71XX_GPIO_REG_OUT);
t &= ~(RB750_NAND_CLE | RB750_NAND_ALE);
t |= (ctrl & NAND_CLE) ? RB750_NAND_CLE : 0;
t |= (ctrl & NAND_ALE) ? RB750_NAND_ALE : 0;
__raw_writel(t, base + AR71XX_GPIO_REG_OUT);
/* flush write */
__raw_readl(base + AR71XX_GPIO_REG_OUT);
}
if (cmd != NAND_CMD_NONE) {
u8 t = cmd;
rb750_nand_write(&t, 1);
}
}
static u8 rb750_nand_read_byte(struct mtd_info *mtd)
{
u8 data = 0;
rb750_nand_read(&data, 1);
return data;
}
static void rb750_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
rb750_nand_read(buf, len);
}
static void rb750_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
rb750_nand_write(buf, len);
}
static void __init rb750_nand_gpio_init(struct rb750_nand_info *info)
{
void __iomem *base = ath79_gpio_base;
u32 out;
u32 t;
out = __raw_readl(base + AR71XX_GPIO_REG_OUT);
/* setup output levels */
__raw_writel(RB750_NAND_NCE | RB750_NAND_NRE | RB750_NAND_NWE,
base + AR71XX_GPIO_REG_SET);
__raw_writel(RB750_NAND_ALE | RB750_NAND_CLE,
base + AR71XX_GPIO_REG_CLEAR);
/* setup input lines */
t = __raw_readl(base + AR71XX_GPIO_REG_OE);
__raw_writel(t & ~(RB750_NAND_INPUT_BITS), base + AR71XX_GPIO_REG_OE);
/* setup output lines */
t = __raw_readl(base + AR71XX_GPIO_REG_OE);
t |= RB750_NAND_OUTPUT_BITS;
t |= info->pdata->nce_line;
__raw_writel(t, base + AR71XX_GPIO_REG_OE);
info->pdata->latch_change(~out & RB750_NAND_IO0, out & RB750_NAND_IO0);
}
static int rb750_nand_probe(struct platform_device *pdev)
{
struct rb750_nand_info *info;
struct rb7xx_nand_platform_data *pdata;
struct mtd_info *mtd;
int ret;
printk(KERN_INFO DRV_DESC " version " DRV_VERSION "\n");
pdata = pdev->dev.platform_data;
if (!pdata)
return -EINVAL;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->chip.priv = &info;
mtd = rbinfo_to_mtd(info);
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
mtd->priv = &info->chip;
#endif
mtd->owner = THIS_MODULE;
info->chip.select_chip = rb750_nand_select_chip;
info->chip.cmd_ctrl = rb750_nand_cmd_ctrl;
info->chip.dev_ready = rb750_nand_dev_ready;
info->chip.read_byte = rb750_nand_read_byte;
info->chip.write_buf = rb750_nand_write_buf;
info->chip.read_buf = rb750_nand_read_buf;
info->chip.chip_delay = 25;
info->chip.ecc.mode = NAND_ECC_SOFT;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,6,0)
info->chip.ecc.algo = NAND_ECC_HAMMING;
#endif
info->chip.options = NAND_NO_SUBPAGE_WRITE;
info->pdata = pdata;
platform_set_drvdata(pdev, info);
rb750_nand_gpio_init(info);
ret = nand_scan_ident(mtd, 1, NULL);
if (ret) {
ret = -ENXIO;
goto err_free_info;
}
if (mtd->writesize == 512)
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
info->chip.ecc.layout = &rb750_nand_ecclayout;
#else
mtd_set_ooblayout(mtd, &rb750_nand_ecclayout_ops);
#endif
ret = nand_scan_tail(mtd);
if (ret) {
return -ENXIO;
goto err_set_drvdata;
}
ret = mtd_device_register(mtd, rb750_nand_partitions,
ARRAY_SIZE(rb750_nand_partitions));
if (ret)
goto err_release_nand;
return 0;
err_release_nand:
nand_release(&info->chip);
err_set_drvdata:
platform_set_drvdata(pdev, NULL);
err_free_info:
kfree(info);
return ret;
}
static int rb750_nand_remove(struct platform_device *pdev)
{
struct rb750_nand_info *info = platform_get_drvdata(pdev);
nand_release(&info->chip);
platform_set_drvdata(pdev, NULL);
kfree(info);
return 0;
}
static struct platform_driver rb750_nand_driver = {
.probe = rb750_nand_probe,
.remove = rb750_nand_remove,
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
static int __init rb750_nand_init(void)
{
return platform_driver_register(&rb750_nand_driver);
}
static void __exit rb750_nand_exit(void)
{
platform_driver_unregister(&rb750_nand_driver);
}
module_init(rb750_nand_init);
module_exit(rb750_nand_exit);
MODULE_DESCRIPTION(DRV_DESC);
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
MODULE_LICENSE("GPL v2");

View File

@@ -0,0 +1,460 @@
/*
* NAND flash driver for the MikroTik RouterBOARD 91x series
*
* Copyright (C) 2013-2014 Gabor Juhos <juhosg@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/gpio.h>
#include <linux/platform_data/rb91x_nand.h>
#include <linux/version.h>
#include <asm/mach-ath79/ar71xx_regs.h>
#include <asm/mach-ath79/ath79.h>
#define DRV_DESC "NAND flash driver for the RouterBOARD 91x series"
#define RB91X_NAND_NRWE BIT(12)
#define RB91X_NAND_DATA_BITS (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) |\
BIT(13) | BIT(14) | BIT(15))
#define RB91X_NAND_INPUT_BITS (RB91X_NAND_DATA_BITS | RB91X_NAND_RDY)
#define RB91X_NAND_OUTPUT_BITS (RB91X_NAND_DATA_BITS | RB91X_NAND_NRWE)
#define RB91X_NAND_LOW_DATA_MASK 0x1f
#define RB91X_NAND_HIGH_DATA_MASK 0xe0
#define RB91X_NAND_HIGH_DATA_SHIFT 8
struct rb91x_nand_info {
struct nand_chip chip;
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
struct mtd_info mtd;
#endif
struct device *dev;
int gpio_nce;
int gpio_ale;
int gpio_cle;
int gpio_rdy;
int gpio_read;
int gpio_nrw;
int gpio_nle;
};
static inline struct rb91x_nand_info *mtd_to_rbinfo(struct mtd_info *mtd)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
return container_of(mtd, struct rb91x_nand_info, mtd);
#else
struct nand_chip *chip = mtd_to_nand(mtd);
return container_of(chip, struct rb91x_nand_info, chip);
#endif
}
static struct mtd_info *rbinfo_to_mtd(struct rb91x_nand_info *nfc)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
return &nfc->mtd;
#else
return nand_to_mtd(&nfc->chip);
#endif
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
/*
* We need to use the OLD Yaffs-1 OOB layout, otherwise the RB bootloader
* will not be able to find the kernel that we load.
*/
static struct nand_ecclayout rb91x_nand_ecclayout = {
.eccbytes = 6,
.eccpos = { 8, 9, 10, 13, 14, 15 },
.oobavail = 9,
.oobfree = { { 0, 4 }, { 6, 2 }, { 11, 2 }, { 4, 1 } }
};
#else
static int rb91x_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
switch (section) {
case 0:
oobregion->offset = 8;
oobregion->length = 3;
return 0;
case 1:
oobregion->offset = 13;
oobregion->length = 3;
return 0;
default:
return -ERANGE;
}
}
static int rb91x_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
switch (section) {
case 0:
oobregion->offset = 0;
oobregion->length = 4;
return 0;
case 1:
oobregion->offset = 4;
oobregion->length = 1;
return 0;
case 2:
oobregion->offset = 6;
oobregion->length = 2;
return 0;
case 3:
oobregion->offset = 11;
oobregion->length = 2;
return 0;
default:
return -ERANGE;
}
}
static const struct mtd_ooblayout_ops rb91x_nand_ecclayout_ops = {
.ecc = rb91x_ooblayout_ecc,
.free = rb91x_ooblayout_free,
};
#endif /* < 4.6 */
static struct mtd_partition rb91x_nand_partitions[] = {
{
.name = "booter",
.offset = 0,
.size = (256 * 1024),
.mask_flags = MTD_WRITEABLE,
}, {
.name = "kernel",
.offset = (256 * 1024),
.size = (4 * 1024 * 1024) - (256 * 1024),
}, {
.name = "ubi",
.offset = MTDPART_OFS_NXTBLK,
.size = MTDPART_SIZ_FULL,
},
};
static void rb91x_nand_write(struct rb91x_nand_info *rbni,
const u8 *buf,
unsigned len)
{
void __iomem *base = ath79_gpio_base;
u32 oe_reg;
u32 out_reg;
u32 out;
unsigned i;
/* enable the latch */
gpio_set_value_cansleep(rbni->gpio_nle, 0);
oe_reg = __raw_readl(base + AR71XX_GPIO_REG_OE);
out_reg = __raw_readl(base + AR71XX_GPIO_REG_OUT);
/* set data lines to output mode */
__raw_writel(oe_reg & ~(RB91X_NAND_DATA_BITS | RB91X_NAND_NRWE),
base + AR71XX_GPIO_REG_OE);
out = out_reg & ~(RB91X_NAND_DATA_BITS | RB91X_NAND_NRWE);
for (i = 0; i != len; i++) {
u32 data;
data = (buf[i] & RB91X_NAND_HIGH_DATA_MASK) <<
RB91X_NAND_HIGH_DATA_SHIFT;
data |= buf[i] & RB91X_NAND_LOW_DATA_MASK;
data |= out;
__raw_writel(data, base + AR71XX_GPIO_REG_OUT);
/* deactivate WE line */
data |= RB91X_NAND_NRWE;
__raw_writel(data, base + AR71XX_GPIO_REG_OUT);
/* flush write */
__raw_readl(base + AR71XX_GPIO_REG_OUT);
}
/* restore registers */
__raw_writel(out_reg, base + AR71XX_GPIO_REG_OUT);
__raw_writel(oe_reg, base + AR71XX_GPIO_REG_OE);
/* flush write */
__raw_readl(base + AR71XX_GPIO_REG_OUT);
/* disable the latch */
gpio_set_value_cansleep(rbni->gpio_nle, 1);
}
static void rb91x_nand_read(struct rb91x_nand_info *rbni,
u8 *read_buf,
unsigned len)
{
void __iomem *base = ath79_gpio_base;
u32 oe_reg;
u32 out_reg;
unsigned i;
/* enable read mode */
gpio_set_value_cansleep(rbni->gpio_read, 1);
/* enable latch */
gpio_set_value_cansleep(rbni->gpio_nle, 0);
/* save registers */
oe_reg = __raw_readl(base + AR71XX_GPIO_REG_OE);
out_reg = __raw_readl(base + AR71XX_GPIO_REG_OUT);
/* set data lines to input mode */
__raw_writel(oe_reg | RB91X_NAND_DATA_BITS,
base + AR71XX_GPIO_REG_OE);
for (i = 0; i < len; i++) {
u32 in;
u8 data;
/* activate RE line */
__raw_writel(RB91X_NAND_NRWE, base + AR71XX_GPIO_REG_CLEAR);
/* flush write */
__raw_readl(base + AR71XX_GPIO_REG_CLEAR);
/* read input lines */
in = __raw_readl(base + AR71XX_GPIO_REG_IN);
/* deactivate RE line */
__raw_writel(RB91X_NAND_NRWE, base + AR71XX_GPIO_REG_SET);
data = (in & RB91X_NAND_LOW_DATA_MASK);
data |= (in >> RB91X_NAND_HIGH_DATA_SHIFT) &
RB91X_NAND_HIGH_DATA_MASK;
read_buf[i] = data;
}
/* restore registers */
__raw_writel(out_reg, base + AR71XX_GPIO_REG_OUT);
__raw_writel(oe_reg, base + AR71XX_GPIO_REG_OE);
/* flush write */
__raw_readl(base + AR71XX_GPIO_REG_OUT);
/* disable latch */
gpio_set_value_cansleep(rbni->gpio_nle, 1);
/* disable read mode */
gpio_set_value_cansleep(rbni->gpio_read, 0);
}
static int rb91x_nand_dev_ready(struct mtd_info *mtd)
{
struct rb91x_nand_info *rbni = mtd_to_rbinfo(mtd);
return gpio_get_value_cansleep(rbni->gpio_rdy);
}
static void rb91x_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct rb91x_nand_info *rbni = mtd_to_rbinfo(mtd);
if (ctrl & NAND_CTRL_CHANGE) {
gpio_set_value_cansleep(rbni->gpio_cle,
(ctrl & NAND_CLE) ? 1 : 0);
gpio_set_value_cansleep(rbni->gpio_ale,
(ctrl & NAND_ALE) ? 1 : 0);
gpio_set_value_cansleep(rbni->gpio_nce,
(ctrl & NAND_NCE) ? 0 : 1);
}
if (cmd != NAND_CMD_NONE) {
u8 t = cmd;
rb91x_nand_write(rbni, &t, 1);
}
}
static u8 rb91x_nand_read_byte(struct mtd_info *mtd)
{
struct rb91x_nand_info *rbni = mtd_to_rbinfo(mtd);
u8 data = 0xff;
rb91x_nand_read(rbni, &data, 1);
return data;
}
static void rb91x_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct rb91x_nand_info *rbni = mtd_to_rbinfo(mtd);
rb91x_nand_read(rbni, buf, len);
}
static void rb91x_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct rb91x_nand_info *rbni = mtd_to_rbinfo(mtd);
rb91x_nand_write(rbni, buf, len);
}
static int rb91x_nand_gpio_init(struct rb91x_nand_info *info)
{
int ret;
/*
* Ensure that the LATCH is disabled before initializing
* control lines.
*/
ret = devm_gpio_request_one(info->dev, info->gpio_nle,
GPIOF_OUT_INIT_HIGH, "LATCH enable");
if (ret)
return ret;
ret = devm_gpio_request_one(info->dev, info->gpio_nce,
GPIOF_OUT_INIT_HIGH, "NAND nCE");
if (ret)
return ret;
ret = devm_gpio_request_one(info->dev, info->gpio_nrw,
GPIOF_OUT_INIT_HIGH, "NAND nRW");
if (ret)
return ret;
ret = devm_gpio_request_one(info->dev, info->gpio_cle,
GPIOF_OUT_INIT_LOW, "NAND CLE");
if (ret)
return ret;
ret = devm_gpio_request_one(info->dev, info->gpio_ale,
GPIOF_OUT_INIT_LOW, "NAND ALE");
if (ret)
return ret;
ret = devm_gpio_request_one(info->dev, info->gpio_read,
GPIOF_OUT_INIT_LOW, "NAND READ");
if (ret)
return ret;
ret = devm_gpio_request_one(info->dev, info->gpio_rdy,
GPIOF_IN, "NAND RDY");
return ret;
}
static int rb91x_nand_probe(struct platform_device *pdev)
{
struct rb91x_nand_info *rbni;
struct rb91x_nand_platform_data *pdata;
struct mtd_info *mtd;
int ret;
pr_info(DRV_DESC "\n");
pdata = dev_get_platdata(&pdev->dev);
if (!pdata)
return -EINVAL;
rbni = devm_kzalloc(&pdev->dev, sizeof(*rbni), GFP_KERNEL);
if (!rbni)
return -ENOMEM;
rbni->dev = &pdev->dev;
rbni->gpio_nce = pdata->gpio_nce;
rbni->gpio_ale = pdata->gpio_ale;
rbni->gpio_cle = pdata->gpio_cle;
rbni->gpio_read = pdata->gpio_read;
rbni->gpio_nrw = pdata->gpio_nrw;
rbni->gpio_rdy = pdata->gpio_rdy;
rbni->gpio_nle = pdata->gpio_nle;
rbni->chip.priv = &rbni;
mtd = rbinfo_to_mtd(rbni);
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
mtd->priv = &rbni->chip;
#endif
mtd->owner = THIS_MODULE;
rbni->chip.cmd_ctrl = rb91x_nand_cmd_ctrl;
rbni->chip.dev_ready = rb91x_nand_dev_ready;
rbni->chip.read_byte = rb91x_nand_read_byte;
rbni->chip.write_buf = rb91x_nand_write_buf;
rbni->chip.read_buf = rb91x_nand_read_buf;
rbni->chip.chip_delay = 25;
rbni->chip.ecc.mode = NAND_ECC_SOFT;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,6,0)
rbni->chip.ecc.algo = NAND_ECC_HAMMING;
#endif
rbni->chip.options = NAND_NO_SUBPAGE_WRITE;
platform_set_drvdata(pdev, rbni);
ret = rb91x_nand_gpio_init(rbni);
if (ret)
return ret;
ret = nand_scan_ident(mtd, 1, NULL);
if (ret)
return ret;
if (mtd->writesize == 512)
#if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
rbni->chip.ecc.layout = &rb91x_nand_ecclayout;
#else
mtd_set_ooblayout(mtd, &rb91x_nand_ecclayout_ops);
#endif
ret = nand_scan_tail(mtd);
if (ret)
return ret;
ret = mtd_device_register(mtd, rb91x_nand_partitions,
ARRAY_SIZE(rb91x_nand_partitions));
if (ret)
goto err_release_nand;
return 0;
err_release_nand:
nand_release(&rbni->chip);
return ret;
}
static int rb91x_nand_remove(struct platform_device *pdev)
{
struct rb91x_nand_info *info = platform_get_drvdata(pdev);
nand_release(&info->chip);
return 0;
}
static struct platform_driver rb91x_nand_driver = {
.probe = rb91x_nand_probe,
.remove = rb91x_nand_remove,
.driver = {
.name = RB91X_NAND_DRIVER_NAME,
.owner = THIS_MODULE,
},
};
module_platform_driver(rb91x_nand_driver);
MODULE_DESCRIPTION(DRV_DESC);
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
MODULE_LICENSE("GPL v2");