Files
openwrt-R7800-nss/target/linux/realtek/files-5.10/drivers/net/dsa/rtl83xx/rtl931x.c
Birger Koblitz 0538dc693b realtek: add support for port led configuration on RTL93XX
Using the led-set attribute of a port in the dts we allow configuration
of the port leds. Each led-set is being defined in the led-set configuration
of the .dts, giving a specific configuration to steer the port LEDs via a serial
connection.

Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
2022-02-17 15:21:47 +00:00

1662 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl83xx.h"
extern struct mutex smi_lock;
extern struct rtl83xx_soc_info soc_info;
/* Definition of the RTL931X-specific template field IDs as used in the PIE */
enum template_field_id {
TEMPLATE_FIELD_SPM0 = 1,
TEMPLATE_FIELD_SPM1 = 2,
TEMPLATE_FIELD_SPM2 = 3,
TEMPLATE_FIELD_SPM3 = 4,
TEMPLATE_FIELD_DMAC0 = 9,
TEMPLATE_FIELD_DMAC1 = 10,
TEMPLATE_FIELD_DMAC2 = 11,
TEMPLATE_FIELD_SMAC0 = 12,
TEMPLATE_FIELD_SMAC1 = 13,
TEMPLATE_FIELD_SMAC2 = 14,
TEMPLATE_FIELD_ETHERTYPE = 15,
TEMPLATE_FIELD_OTAG = 16,
TEMPLATE_FIELD_ITAG = 17,
TEMPLATE_FIELD_SIP0 = 18,
TEMPLATE_FIELD_SIP1 = 19,
TEMPLATE_FIELD_DIP0 = 20,
TEMPLATE_FIELD_DIP1 = 21,
TEMPLATE_FIELD_IP_TOS_PROTO = 22,
TEMPLATE_FIELD_L4_SPORT = 23,
TEMPLATE_FIELD_L4_DPORT = 24,
TEMPLATE_FIELD_L34_HEADER = 25,
TEMPLATE_FIELD_TCP_INFO = 26,
TEMPLATE_FIELD_SIP2 = 34,
TEMPLATE_FIELD_SIP3 = 35,
TEMPLATE_FIELD_SIP4 = 36,
TEMPLATE_FIELD_SIP5 = 37,
TEMPLATE_FIELD_SIP6 = 38,
TEMPLATE_FIELD_SIP7 = 39,
TEMPLATE_FIELD_DIP2 = 42,
TEMPLATE_FIELD_DIP3 = 43,
TEMPLATE_FIELD_DIP4 = 44,
TEMPLATE_FIELD_DIP5 = 45,
TEMPLATE_FIELD_DIP6 = 46,
TEMPLATE_FIELD_DIP7 = 47,
TEMPLATE_FIELD_FLOW_LABEL = 49,
TEMPLATE_FIELD_DSAP_SSAP = 50,
TEMPLATE_FIELD_FWD_VID = 52,
TEMPLATE_FIELD_RANGE_CHK = 53,
TEMPLATE_FIELD_SLP = 55,
TEMPLATE_FIELD_DLP = 56,
TEMPLATE_FIELD_META_DATA = 57,
TEMPLATE_FIELD_FIRST_MPLS1 = 60,
TEMPLATE_FIELD_FIRST_MPLS2 = 61,
TEMPLATE_FIELD_DPM3 = 8,
};
/* The meaning of TEMPLATE_FIELD_VLAN depends on phase and the configuration in
* RTL931X_PIE_CTRL. We use always the same definition and map to the inner VLAN tag:
*/
#define TEMPLATE_FIELD_VLAN TEMPLATE_FIELD_ITAG
// Number of fixed templates predefined in the RTL9300 SoC
#define N_FIXED_TEMPLATES 5
// RTL931x specific predefined templates
static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS_RTL931X] =
{
{
TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_DSAP_SSAP,
TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1,
TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
}, {
TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_TCP_INFO,
TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_VLAN,
TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1,
TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
}, {
TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT,
TEMPLATE_FIELD_META_DATA, TEMPLATE_FIELD_SLP
}, {
TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_IP_TOS_PROTO,
TEMPLATE_FIELD_TCP_INFO, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT,
TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SLP
}, {
TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_META_DATA,
TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1,
TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
},
};
inline void rtl931x_exec_tbl0_cmd(u32 cmd)
{
sw_w32(cmd, RTL931X_TBL_ACCESS_CTRL_0);
do { } while (sw_r32(RTL931X_TBL_ACCESS_CTRL_0) & (1 << 20));
}
inline void rtl931x_exec_tbl1_cmd(u32 cmd)
{
sw_w32(cmd, RTL931X_TBL_ACCESS_CTRL_1);
do { } while (sw_r32(RTL931X_TBL_ACCESS_CTRL_1) & (1 << 17));
}
inline int rtl931x_tbl_access_data_0(int i)
{
return RTL931X_TBL_ACCESS_DATA_0(i);
}
void rtl931x_vlan_profile_dump(int index)
{
u64 profile[4];
if (index < 0 || index > 15)
return;
profile[0] = sw_r32(RTL931X_VLAN_PROFILE_SET(index));
profile[1] = (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 4) & 0x1FFFFFFFULL) << 32
| (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 8) & 0xFFFFFFFF);
profile[2] = (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 16) & 0x1FFFFFFFULL) << 32
| (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 12) & 0xFFFFFFFF);
profile[3] = (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 20) & 0x1FFFFFFFULL) << 32
| (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 24) & 0xFFFFFFFF);
pr_info("VLAN %d: L2 learning: %d, L2 Unknown MultiCast Field %llx, \
IPv4 Unknown MultiCast Field %llx, IPv6 Unknown MultiCast Field: %llx",
index, (u32) (profile[0] & (3 << 14)), profile[1], profile[2], profile[3]);
}
static void rtl931x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
int i;
u32 cmd = 1 << 20 /* Execute cmd */
| 0 << 19 /* Read */
| 5 << 15 /* Table type 0b101 */
| (msti & 0x3fff);
priv->r->exec_tbl0_cmd(cmd);
for (i = 0; i < 4; i++)
port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
}
static void rtl931x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
int i;
u32 cmd = 1 << 20 /* Execute cmd */
| 1 << 19 /* Write */
| 5 << 15 /* Table type 0b101 */
| (msti & 0x3fff);
for (i = 0; i < 4; i++)
sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
priv->r->exec_tbl0_cmd(cmd);
}
inline static int rtl931x_trk_mbr_ctr(int group)
{
return RTL931X_TRK_MBR_CTRL + (group << 2);
}
static void rtl931x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 v, w, x, y;
// Read VLAN table (3) via register 0
struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 3);
rtl_table_read(r, vlan);
v = sw_r32(rtl_table_data(r, 0));
w = sw_r32(rtl_table_data(r, 1));
x = sw_r32(rtl_table_data(r, 2));
y = sw_r32(rtl_table_data(r, 3));
rtl_table_release(r);
pr_debug("VLAN_READ %d: %08x %08x %08x %08x\n", vlan, v, w, x, y);
info->tagged_ports = ((u64) v) << 25 | (w >> 7);
info->profile_id = (x >> 16) & 0xf;
info->fid = w & 0x7f; // AKA MSTI depending on context
info->hash_uc_fid = !!(x & BIT(31));
info->hash_mc_fid = !!(x & BIT(30));
info->if_id = (x >> 20) & 0x3ff;
info->profile_id = (x >> 16) & 0xf;
info->multicast_grp_mask = x & 0xffff;
if (x & BIT(31))
info->l2_tunnel_list_id = y >> 18;
else
info->l2_tunnel_list_id = -1;
pr_debug("%s read tagged %016llx, profile-id %d, uc %d, mc %d, intf-id %d\n", __func__,
info->tagged_ports, info->profile_id, info->hash_uc_fid, info->hash_mc_fid,
info->if_id);
// Read UNTAG table via table register 3
r = rtl_table_get(RTL9310_TBL_3, 0);
rtl_table_read(r, vlan);
v = ((u64)sw_r32(rtl_table_data(r, 0))) << 25;
v |= sw_r32(rtl_table_data(r, 1)) >> 7;
rtl_table_release(r);
info->untagged_ports = v;
}
static void rtl931x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 v, w, x, y;
// Access VLAN table (1) via register 0
struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 3);
v = info->tagged_ports >> 25;
w = (info->tagged_ports & 0x1fffff) << 7;
w |= info->fid & 0x7f;
x = info->hash_uc_fid ? BIT(31) : 0;
x |= info->hash_mc_fid ? BIT(30) : 0;
x |= info->if_id & 0x3ff << 20;
x |= (info->profile_id & 0xf) << 16;
x |= info->multicast_grp_mask & 0xffff;
if (info->l2_tunnel_list_id >= 0) {
y = info->l2_tunnel_list_id << 18;
y |= BIT(31);
} else {
y = 0;
}
sw_w32(v, rtl_table_data(r, 0));
sw_w32(w, rtl_table_data(r, 1));
sw_w32(x, rtl_table_data(r, 2));
sw_w32(y, rtl_table_data(r, 3));
rtl_table_write(r, vlan);
rtl_table_release(r);
}
static void rtl931x_vlan_set_untagged(u32 vlan, u64 portmask)
{
struct table_reg *r = rtl_table_get(RTL9310_TBL_3, 0);
rtl839x_set_port_reg_be(portmask << 7, rtl_table_data(r, 0));
rtl_table_write(r, vlan);
rtl_table_release(r);
}
static inline int rtl931x_mac_force_mode_ctrl(int p)
{
return RTL931X_MAC_FORCE_MODE_CTRL + (p << 2);
}
static inline int rtl931x_mac_link_spd_sts(int p)
{
return RTL931X_MAC_LINK_SPD_STS + (((p >> 3) << 2));
}
static inline int rtl931x_mac_port_ctrl(int p)
{
return RTL931X_MAC_L2_PORT_CTRL + (p << 7);
}
static inline int rtl931x_l2_port_new_salrn(int p)
{
return RTL931X_L2_PORT_NEW_SALRN(p);
}
static inline int rtl931x_l2_port_new_sa_fwd(int p)
{
return RTL931X_L2_PORT_NEW_SA_FWD(p);
}
irqreturn_t rtl931x_switch_irq(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
u32 status = sw_r32(RTL931X_ISR_GLB_SRC);
u64 ports = rtl839x_get_port_reg_le(RTL931X_ISR_PORT_LINK_STS_CHG);
u64 link;
int i;
/* Clear status */
rtl839x_set_port_reg_le(ports, RTL931X_ISR_PORT_LINK_STS_CHG);
pr_debug("RTL931X Link change: status: %x, ports %016llx\n", status, ports);
link = rtl839x_get_port_reg_le(RTL931X_MAC_LINK_STS);
// Must re-read this to get correct status
link = rtl839x_get_port_reg_le(RTL931X_MAC_LINK_STS);
pr_debug("RTL931X Link change: status: %x, link status %016llx\n", status, link);
for (i = 0; i < 56; i++) {
if (ports & BIT_ULL(i)) {
if (link & BIT_ULL(i)) {
pr_info("%s port %d up\n", __func__, i);
dsa_port_phylink_mac_change(ds, i, true);
} else {
pr_info("%s port %d down\n", __func__, i);
dsa_port_phylink_mac_change(ds, i, false);
}
}
}
return IRQ_HANDLED;
}
int rtl931x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
u32 v;
int err = 0;
val &= 0xffff;
if (port > 63 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
pr_debug("%s: writing to phy %d %d %d %d\n", __func__, port, page, reg, val);
/* Clear both port registers */
sw_w32(0, RTL931X_SMI_INDRT_ACCESS_CTRL_2);
sw_w32(0, RTL931X_SMI_INDRT_ACCESS_CTRL_2 + 4);
sw_w32_mask(0, BIT(port % 32), RTL931X_SMI_INDRT_ACCESS_CTRL_2 + (port / 32) * 4);
sw_w32_mask(0xffff, val, RTL931X_SMI_INDRT_ACCESS_CTRL_3);
v = reg << 6 | page << 11 ;
sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0);
sw_w32(0x1ff, RTL931X_SMI_INDRT_ACCESS_CTRL_1);
v |= BIT(4) | 1; /* Write operation and execute */
sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0);
do {
} while (sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0) & 0x1);
if (sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0) & 0x2)
err = -EIO;
mutex_unlock(&smi_lock);
return err;
}
int rtl931x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
u32 v;
if (port > 63 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
sw_w32(port << 5, RTL931X_SMI_INDRT_ACCESS_BC_PHYID_CTRL);
v = reg << 6 | page << 11 | 1;
sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0);
do {
} while (sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0) & 0x1);
v = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0);
*val = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_3);
*val = (*val & 0xffff0000) >> 16;
pr_debug("%s: port %d, page: %d, reg: %x, val: %x, v: %08x\n",
__func__, port, page, reg, *val, v);
mutex_unlock(&smi_lock);
return 0;
}
/*
* Read an mmd register of the PHY
*/
int rtl931x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val)
{
int err = 0;
u32 v;
int type = 2; // TODO:2, for C45 PHYs need to set to 1 sometimes
mutex_lock(&smi_lock);
// Set PHY to access via port-number
sw_w32(port << 5, RTL931X_SMI_INDRT_ACCESS_BC_PHYID_CTRL);
// Set MMD device number and register to write to
sw_w32(devnum << 16 | (regnum & 0xffff), RTL931X_SMI_INDRT_ACCESS_MMD_CTRL);
v = type << 2 | BIT(0); // MMD-access-type | EXEC
sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0);
do {
v = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0);
} while (v & BIT(0));
// Check for error condition
if (v & BIT(1))
err = -EIO;
*val = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_3) >> 16;
pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, *val, err);
mutex_unlock(&smi_lock);
return err;
}
/*
* Write to an mmd register of the PHY
*/
int rtl931x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val)
{
int err = 0;
u32 v;
int type = 1; // TODO: For C45 PHYs need to set to 2
mutex_lock(&smi_lock);
// Set PHY to access via port-number
sw_w32(port << 5, RTL931X_SMI_INDRT_ACCESS_BC_PHYID_CTRL);
// Set data to write
sw_w32_mask(0xffff, val, RTL931X_SMI_INDRT_ACCESS_CTRL_3);
// Set MMD device number and register to write to
sw_w32(devnum << 16 | (regnum & 0xffff), RTL931X_SMI_INDRT_ACCESS_MMD_CTRL);
v = BIT(4) | type << 2 | BIT(0); // WRITE | MMD-access-type | EXEC
sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0);
do {
v = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0);
} while (v & BIT(0));
pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, val, err);
mutex_unlock(&smi_lock);
return err;
}
void rtl931x_print_matrix(void)
{
volatile u64 *ptr = RTL838X_SW_BASE + RTL839X_PORT_ISO_CTRL(0);
int i;
for (i = 0; i < 52; i += 4)
pr_info("> %16llx %16llx %16llx %16llx\n",
ptr[i + 0], ptr[i + 1], ptr[i + 2], ptr[i + 3]);
pr_info("CPU_PORT> %16llx\n", ptr[52]);
}
void rtl931x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action)
{
u32 value = 0;
/* hack for value mapping */
if (type == GRATARP && action == COPY2CPU)
action = TRAP2MASTERCPU;
switch(action) {
case FORWARD:
value = 0;
break;
case DROP:
value = 1;
break;
case TRAP2CPU:
value = 2;
break;
case TRAP2MASTERCPU:
value = 3;
break;
case FLOODALL:
value = 4;
break;
default:
break;
}
switch(type) {
case BPDU:
sw_w32_mask(7 << ((port % 10) * 3), value << ((port % 10) * 3), RTL931X_RMA_BPDU_CTRL + ((port / 10) << 2));
break;
case PTP:
//udp
sw_w32_mask(3 << 2, value << 2, RTL931X_RMA_PTP_CTRL + (port << 2));
//eth2
sw_w32_mask(3, value, RTL931X_RMA_PTP_CTRL + (port << 2));
break;
case PTP_UDP:
sw_w32_mask(3 << 2, value << 2, RTL931X_RMA_PTP_CTRL + (port << 2));
break;
case PTP_ETH2:
sw_w32_mask(3, value, RTL931X_RMA_PTP_CTRL + (port << 2));
break;
case LLTP:
sw_w32_mask(7 << ((port % 10) * 3), value << ((port % 10) * 3), RTL931X_RMA_LLTP_CTRL + ((port / 10) << 2));
break;
case EAPOL:
sw_w32_mask(7 << ((port % 10) * 3), value << ((port % 10) * 3), RTL931X_RMA_EAPOL_CTRL + ((port / 10) << 2));
break;
case GRATARP:
sw_w32_mask(3 << ((port & 0xf) << 1), value << ((port & 0xf) << 1), RTL931X_TRAP_ARP_GRAT_PORT_ACT + ((port >> 4) << 2));
break;
}
}
u64 rtl931x_traffic_get(int source)
{
u32 v;
struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6);
rtl_table_read(r, source);
v = sw_r32(rtl_table_data(r, 0));
rtl_table_release(r);
return v >> 3;
}
/*
* Enable traffic between a source port and a destination port matrix
*/
void rtl931x_traffic_set(int source, u64 dest_matrix)
{
struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6);
sw_w32((dest_matrix << 3), rtl_table_data(r, 0));
rtl_table_write(r, source);
rtl_table_release(r);
}
void rtl931x_traffic_enable(int source, int dest)
{
struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6);
rtl_table_read(r, source);
sw_w32_mask(0, BIT(dest + 3), rtl_table_data(r, 0));
rtl_table_write(r, source);
rtl_table_release(r);
}
void rtl931x_traffic_disable(int source, int dest)
{
struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6);
rtl_table_read(r, source);
sw_w32_mask(BIT(dest + 3), 0, rtl_table_data(r, 0));
rtl_table_write(r, source);
rtl_table_release(r);
}
static u64 rtl931x_l2_hash_seed(u64 mac, u32 vid)
{
u64 v = vid;
v <<= 48;
v |= mac;
return v;
}
/*
* Calculate both the block 0 and the block 1 hash by applyingthe same hash
* algorithm as the one used currently by the ASIC to the seed, and return
* both hashes in the lower and higher word of the return value since only 12 bit of
* the hash are significant.
*/
static u32 rtl931x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 h, h0, h1, h2, h3, h4, k0, k1;
h0 = seed & 0xfff;
h1 = (seed >> 12) & 0xfff;
h2 = (seed >> 24) & 0xfff;
h3 = (seed >> 36) & 0xfff;
h4 = (seed >> 48) & 0xfff;
h4 = ((h4 & 0x7) << 9) | ((h4 >> 3) & 0x1ff);
k0 = h0 ^ h1 ^ h2 ^ h3 ^ h4;
h0 = seed & 0xfff;
h0 = ((h0 & 0x1ff) << 3) | ((h0 >> 9) & 0x7);
h1 = (seed >> 12) & 0xfff;
h1 = ((h1 & 0x3f) << 6) | ((h1 >> 6) & 0x3f);
h2 = (seed >> 24) & 0xfff;
h3 = (seed >> 36) & 0xfff;
h3 = ((h3 & 0x3f) << 6) | ((h3 >> 6) & 0x3f);
h4 = (seed >> 48) & 0xfff;
k1 = h0 ^ h1 ^ h2 ^ h3 ^ h4;
// Algorithm choice for block 0
if (sw_r32(RTL931X_L2_CTRL) & BIT(0))
h = k1;
else
h = k0;
/* Algorithm choice for block 1
* Since k0 and k1 are < 4096, adding 4096 will offset the hash into the second
* half of hash-space
* 4096 is in fact the hash-table size 32768 divided by 4 hashes per bucket
* divided by 2 to divide the hash space in 2
*/
if (sw_r32(RTL931X_L2_CTRL) & BIT(1))
h |= (k1 + 4096) << 16;
else
h |= (k0 + 4096) << 16;
return h;
}
/*
* Fills an L2 entry structure from the SoC registers
*/
static void rtl931x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
{
pr_debug("In %s valid?\n", __func__);
e->valid = !!(r[0] & BIT(31));
if (!e->valid)
return;
pr_debug("%s: entry valid, raw: %08x %08x %08x %08x\n", __func__, r[0], r[1], r[2], r[3]);
e->is_ip_mc = false;
e->is_ipv6_mc = false;
e->mac[0] = r[0] >> 8;
e->mac[1] = r[0];
e->mac[2] = r[1] >> 24;
e->mac[3] = r[1] >> 16;
e->mac[4] = r[1] >> 8;
e->mac[5] = r[1];
e->is_open_flow = !!(r[0] & BIT(30));
e->is_pe_forward = !!(r[0] & BIT(29));
e->next_hop = !!(r[2] & BIT(30));
e->rvid = (r[0] >> 16) & 0xfff;
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
e->type = L2_UNICAST;
e->is_l2_tunnel = !!(r[2] & BIT(31));
e->is_static = !!(r[2] & BIT(13));
e->port = (r[2] >> 19) & 0x3ff;
// Check for trunk port
if (r[2] & BIT(29)) {
e->is_trunk = true;
e->stack_dev = (e->port >> 9) & 1;
e->trunk = e->port & 0x3f;
} else {
e->is_trunk = false;
e->stack_dev = (e->port >> 6) & 0xf;
e->port = e->port & 0x3f;
}
e->block_da = !!(r[2] & BIT(14));
e->block_sa = !!(r[2] & BIT(15));
e->suspended = !!(r[2] & BIT(12));
e->age = (r[2] >> 16) & 3;
// the UC_VID field in hardware is used for the VID or for the route id
if (e->next_hop) {
e->nh_route_id = r[2] & 0x7ff;
e->vid = 0;
} else {
e->vid = r[2] & 0xfff;
e->nh_route_id = 0;
}
if (e->is_l2_tunnel)
e->l2_tunnel_id = ((r[2] & 0xff) << 4) | (r[3] >> 28);
// TODO: Implement VLAN conversion
} else {
e->type = L2_MULTICAST;
e->is_local_forward = !!(r[2] & BIT(31));
e->is_remote_forward = !!(r[2] & BIT(17));
e->mc_portmask_index = (r[2] >> 18) & 0xfff;
e->l2_tunnel_list_id = (r[2] >> 4) & 0x1fff;
}
}
/*
* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
*/
static void rtl931x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
{
u32 port;
if (!e->valid) {
r[0] = r[1] = r[2] = 0;
return;
}
r[2] = BIT(31); // Set valid bit
r[0] = ((u32)e->mac[0]) << 24 | ((u32)e->mac[1]) << 16
| ((u32)e->mac[2]) << 8 | ((u32)e->mac[3]);
r[1] = ((u32)e->mac[4]) << 24 | ((u32)e->mac[5]) << 16;
r[2] |= e->next_hop ? BIT(12) : 0;
if (e->type == L2_UNICAST) {
r[2] |= e->is_static ? BIT(14) : 0;
r[1] |= e->rvid & 0xfff;
r[2] |= (e->port & 0x3ff) << 20;
if (e->is_trunk) {
r[2] |= BIT(30);
port = e->stack_dev << 9 | (e->port & 0x3f);
} else {
port = (e->stack_dev & 0xf) << 6;
port |= e->port & 0x3f;
}
r[2] |= port << 20;
r[2] |= e->block_da ? BIT(15) : 0;
r[2] |= e->block_sa ? BIT(17) : 0;
r[2] |= e->suspended ? BIT(13) : 0;
r[2] |= (e->age & 0x3) << 17;
// the UC_VID field in hardware is used for the VID or for the route id
if (e->next_hop)
r[2] |= e->nh_route_id & 0x7ff;
else
r[2] |= e->vid & 0xfff;
} else { // L2_MULTICAST
r[2] |= (e->mc_portmask_index & 0x3ff) << 16;
r[2] |= e->mc_mac_index & 0x7ff;
}
}
/*
* Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
* hash is the id of the bucket and pos is the position of the entry in that bucket
* The data read from the SoC is filled into rtl838x_l2_entry
*/
static u64 rtl931x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[4];
struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 0);
u32 idx;
int i;
u64 mac;
u64 seed;
pr_debug("%s: hash %08x, pos: %d\n", __func__, hash, pos);
/* On the RTL93xx, 2 different hash algorithms are used making it a total of
* 8 buckets that need to be searched, 4 for each hash-half
* Use second hash space when bucket is between 4 and 8 */
if (pos >= 4) {
pos -= 4;
hash >>= 16;
} else {
hash &= 0xffff;
}
idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
pr_debug("%s: NOW hash %08x, pos: %d\n", __func__, hash, pos);
rtl_table_read(q, idx);
for (i = 0; i < 4; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl931x_fill_l2_entry(r, e);
pr_debug("%s: valid: %d, nh: %d\n", __func__, e->valid, e->next_hop);
if (!e->valid)
return 0;
mac = ((u64)e->mac[0]) << 40 | ((u64)e->mac[1]) << 32 | ((u64)e->mac[2]) << 24
| ((u64)e->mac[3]) << 16 | ((u64)e->mac[4]) << 8 | ((u64)e->mac[5]);
seed = rtl931x_l2_hash_seed(mac, e->rvid);
pr_debug("%s: mac %016llx, seed %016llx\n", __func__, mac, seed);
// return vid with concatenated mac as unique id
return seed;
}
static u64 rtl931x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
return 0;
}
static void rtl931x_write_cam(int idx, struct rtl838x_l2_entry *e)
{
}
static void rtl931x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[4];
struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 0);
u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
int i;
pr_info("%s: hash %d, pos %d\n", __func__, hash, pos);
pr_info("%s: index %d -> mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, idx,
e->mac[0], e->mac[1], e->mac[2], e->mac[3],e->mac[4],e->mac[5]);
rtl931x_fill_l2_row(r, e);
pr_info("%s: %d: %08x %08x %08x\n", __func__, idx, r[0], r[1], r[2]);
for (i= 0; i < 4; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static void rtl931x_vlan_fwd_on_inner(int port, bool is_set)
{
// Always set all tag modes to fwd based on either inner or outer tag
if (is_set)
sw_w32_mask(0, 0xf, RTL931X_VLAN_PORT_FWD + (port << 2));
else
sw_w32_mask(0xf, 0, RTL931X_VLAN_PORT_FWD + (port << 2));
}
static void rtl931x_vlan_profile_setup(int profile)
{
u32 p[7];
int i;
pr_info("In %s\n", __func__);
if (profile > 15)
return;
p[0] = sw_r32(RTL931X_VLAN_PROFILE_SET(profile));
// Enable routing of Ipv4/6 Unicast and IPv4/6 Multicast traffic
//p[0] |= BIT(17) | BIT(16) | BIT(13) | BIT(12);
p[0] |= 0x3 << 11; // COPY2CPU
p[1] = 0x1FFFFFF; // L2 unknwon MC flooding portmask all ports, including the CPU-port
p[2] = 0xFFFFFFFF;
p[3] = 0x1FFFFFF; // IPv4 unknwon MC flooding portmask
p[4] = 0xFFFFFFFF;
p[5] = 0x1FFFFFF; // IPv6 unknwon MC flooding portmask
p[6] = 0xFFFFFFFF;
for (i = 0; i < 7; i++)
sw_w32(p[i], RTL931X_VLAN_PROFILE_SET(profile) + i * 4);
pr_info("Leaving %s\n", __func__);
}
static void rtl931x_l2_learning_setup(void)
{
// Portmask for flooding broadcast traffic
rtl839x_set_port_reg_be(0x1FFFFFFFFFFFFFF, RTL931X_L2_BC_FLD_PMSK);
// Portmask for flooding unicast traffic with unknown destination
rtl839x_set_port_reg_be(0x1FFFFFFFFFFFFFF, RTL931X_L2_UNKN_UC_FLD_PMSK);
// Limit learning to maximum: 64k entries, after that just flood (bits 0-2)
sw_w32((0xffff << 3) | FORWARD, RTL931X_L2_LRN_CONSTRT_CTRL);
}
static u64 rtl931x_read_mcast_pmask(int idx)
{
u64 portmask;
// Read MC_PMSK (2) via register RTL9310_TBL_0
struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 2);
rtl_table_read(q, idx);
portmask = sw_r32(rtl_table_data(q, 0));
portmask <<= 32;
portmask |= sw_r32(rtl_table_data(q, 1));
portmask >>= 7;
rtl_table_release(q);
pr_debug("%s: Index idx %d has portmask %016llx\n", __func__, idx, portmask);
return portmask;
}
static void rtl931x_write_mcast_pmask(int idx, u64 portmask)
{
u64 pm = portmask;
// Access MC_PMSK (2) via register RTL9310_TBL_0
struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 2);
pr_debug("%s: Index idx %d has portmask %016llx\n", __func__, idx, pm);
pm <<= 7;
sw_w32((u32)(pm >> 32), rtl_table_data(q, 0));
sw_w32((u32)pm, rtl_table_data(q, 1));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static int rtl931x_set_ageing_time(unsigned long msec)
{
int t = sw_r32(RTL931X_L2_AGE_CTRL);
t &= 0x1FFFFF;
t = (t * 8) / 10;
pr_debug("L2 AGING time: %d sec\n", t);
t = (msec / 100 + 7) / 8;
t = t > 0x1FFFFF ? 0x1FFFFF : t;
sw_w32_mask(0x1FFFFF, t, RTL931X_L2_AGE_CTRL);
pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL931X_L2_PORT_AGE_CTRL));
return 0;
}
void rtl931x_sw_init(struct rtl838x_switch_priv *priv)
{
// rtl931x_sds_init(priv);
}
static void rtl931x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
{
int block = index / PIE_BLOCK_SIZE;
sw_w32_mask(0, BIT(block), RTL931X_PIE_BLK_LOOKUP_CTRL);
}
/*
* Fills the data in the intermediate representation in the pie_rule structure
* into a data field for a given template field field_type
* TODO: This function looks very similar to the function of the rtl9300, but
* since it uses the physical template_field_id, which are different for each
* SoC and there are other field types, it is actually not. If we would also use
* an intermediate representation for a field type, we would could have one
* pie_data_fill function for all SoCs, provided we have also for each SoC a
* function to map between physical and intermediate field type
*/
int rtl931x_pie_data_fill(enum template_field_id field_type, struct pie_rule *pr, u16 *data, u16 *data_m)
{
*data = *data_m = 0;
switch (field_type) {
case TEMPLATE_FIELD_SPM0:
*data = pr->spm;
*data_m = pr->spm_m;
break;
case TEMPLATE_FIELD_SPM1:
*data = pr->spm >> 16;
*data_m = pr->spm_m >> 16;
break;
case TEMPLATE_FIELD_OTAG:
*data = pr->otag;
*data_m = pr->otag_m;
break;
case TEMPLATE_FIELD_SMAC0:
*data = pr->smac[4];
*data = (*data << 8) | pr->smac[5];
*data_m = pr->smac_m[4];
*data_m = (*data_m << 8) | pr->smac_m[5];
break;
case TEMPLATE_FIELD_SMAC1:
*data = pr->smac[2];
*data = (*data << 8) | pr->smac[3];
*data_m = pr->smac_m[2];
*data_m = (*data_m << 8) | pr->smac_m[3];
break;
case TEMPLATE_FIELD_SMAC2:
*data = pr->smac[0];
*data = (*data << 8) | pr->smac[1];
*data_m = pr->smac_m[0];
*data_m = (*data_m << 8) | pr->smac_m[1];
break;
case TEMPLATE_FIELD_DMAC0:
*data = pr->dmac[4];
*data = (*data << 8) | pr->dmac[5];
*data_m = pr->dmac_m[4];
*data_m = (*data_m << 8) | pr->dmac_m[5];
break;
case TEMPLATE_FIELD_DMAC1:
*data = pr->dmac[2];
*data = (*data << 8) | pr->dmac[3];
*data_m = pr->dmac_m[2];
*data_m = (*data_m << 8) | pr->dmac_m[3];
break;
case TEMPLATE_FIELD_DMAC2:
*data = pr->dmac[0];
*data = (*data << 8) | pr->dmac[1];
*data_m = pr->dmac_m[0];
*data_m = (*data_m << 8) | pr->dmac_m[1];
break;
case TEMPLATE_FIELD_ETHERTYPE:
*data = pr->ethertype;
*data_m = pr->ethertype_m;
break;
case TEMPLATE_FIELD_ITAG:
*data = pr->itag;
*data_m = pr->itag_m;
break;
case TEMPLATE_FIELD_SIP0:
if (pr->is_ipv6) {
*data = pr->sip6.s6_addr16[7];
*data_m = pr->sip6_m.s6_addr16[7];
} else {
*data = pr->sip;
*data_m = pr->sip_m;
}
break;
case TEMPLATE_FIELD_SIP1:
if (pr->is_ipv6) {
*data = pr->sip6.s6_addr16[6];
*data_m = pr->sip6_m.s6_addr16[6];
} else {
*data = pr->sip >> 16;
*data_m = pr->sip_m >> 16;
}
break;
case TEMPLATE_FIELD_SIP2:
case TEMPLATE_FIELD_SIP3:
case TEMPLATE_FIELD_SIP4:
case TEMPLATE_FIELD_SIP5:
case TEMPLATE_FIELD_SIP6:
case TEMPLATE_FIELD_SIP7:
*data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
*data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
break;
case TEMPLATE_FIELD_DIP0:
if (pr->is_ipv6) {
*data = pr->dip6.s6_addr16[7];
*data_m = pr->dip6_m.s6_addr16[7];
} else {
*data = pr->dip;
*data_m = pr->dip_m;
}
break;
case TEMPLATE_FIELD_DIP1:
if (pr->is_ipv6) {
*data = pr->dip6.s6_addr16[6];
*data_m = pr->dip6_m.s6_addr16[6];
} else {
*data = pr->dip >> 16;
*data_m = pr->dip_m >> 16;
}
break;
case TEMPLATE_FIELD_DIP2:
case TEMPLATE_FIELD_DIP3:
case TEMPLATE_FIELD_DIP4:
case TEMPLATE_FIELD_DIP5:
case TEMPLATE_FIELD_DIP6:
case TEMPLATE_FIELD_DIP7:
*data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
*data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
break;
case TEMPLATE_FIELD_IP_TOS_PROTO:
*data = pr->tos_proto;
*data_m = pr->tos_proto_m;
break;
case TEMPLATE_FIELD_L4_SPORT:
*data = pr->sport;
*data_m = pr->sport_m;
break;
case TEMPLATE_FIELD_L4_DPORT:
*data = pr->dport;
*data_m = pr->dport_m;
break;
case TEMPLATE_FIELD_DSAP_SSAP:
*data = pr->dsap_ssap;
*data_m = pr->dsap_ssap_m;
break;
case TEMPLATE_FIELD_TCP_INFO:
*data = pr->tcp_info;
*data_m = pr->tcp_info_m;
break;
case TEMPLATE_FIELD_RANGE_CHK:
pr_info("TEMPLATE_FIELD_RANGE_CHK: not configured\n");
break;
default:
pr_info("%s: unknown field %d\n", __func__, field_type);
return -1;
}
return 0;
}
/*
* Reads the intermediate representation of the templated match-fields of the
* PIE rule in the pie_rule structure and fills in the raw data fields in the
* raw register space r[].
* The register space configuration size is identical for the RTL8380/90 and RTL9300,
* however the RTL931X has 2 more registers / fields and the physical field-ids are different
* on all SoCs
* On the RTL9300 the mask fields are not word-aligend!
*/
static void rtl931x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
{
int i;
u16 data, data_m;
for (i = 0; i < N_FIXED_FIELDS; i++) {
rtl931x_pie_data_fill(t[i], pr, &data, &data_m);
// On the RTL9300, the mask fields are not word aligned!
if (!(i % 2)) {
r[5 - i / 2] = data;
r[12 - i / 2] |= ((u32)data_m << 8);
} else {
r[5 - i / 2] |= ((u32)data) << 16;
r[12 - i / 2] |= ((u32)data_m) << 24;
r[11 - i / 2] |= ((u32)data_m) >> 8;
}
}
}
static void rtl931x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
{
pr->mgnt_vlan = r[7] & BIT(31);
if (pr->phase == PHASE_IACL)
pr->dmac_hit_sw = r[7] & BIT(30);
else // TODO: EACL/VACL phase handling
pr->content_too_deep = r[7] & BIT(30);
pr->not_first_frag = r[7] & BIT(29);
pr->frame_type_l4 = (r[7] >> 26) & 7;
pr->frame_type = (r[7] >> 24) & 3;
pr->otag_fmt = (r[7] >> 23) & 1;
pr->itag_fmt = (r[7] >> 22) & 1;
pr->otag_exist = (r[7] >> 21) & 1;
pr->itag_exist = (r[7] >> 20) & 1;
pr->frame_type_l2 = (r[7] >> 18) & 3;
pr->igr_normal_port = (r[7] >> 17) & 1;
pr->tid = (r[7] >> 16) & 1;
pr->mgnt_vlan_m = r[14] & BIT(15);
if (pr->phase == PHASE_IACL)
pr->dmac_hit_sw_m = r[14] & BIT(14);
else
pr->content_too_deep_m = r[14] & BIT(14);
pr->not_first_frag_m = r[14] & BIT(13);
pr->frame_type_l4_m = (r[14] >> 10) & 7;
pr->frame_type_m = (r[14] >> 8) & 3;
pr->otag_fmt_m = r[14] & BIT(7);
pr->itag_fmt_m = r[14] & BIT(6);
pr->otag_exist_m = r[14] & BIT(5);
pr->itag_exist_m = r[14] & BIT (4);
pr->frame_type_l2_m = (r[14] >> 2) & 3;
pr->igr_normal_port_m = r[14] & BIT(1);
pr->tid_m = r[14] & 1;
pr->valid = r[15] & BIT(31);
pr->cond_not = r[15] & BIT(30);
pr->cond_and1 = r[15] & BIT(29);
pr->cond_and2 = r[15] & BIT(28);
}
static void rtl931x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr)
{
r[7] |= pr->mgnt_vlan ? BIT(31) : 0;
if (pr->phase == PHASE_IACL)
r[7] |= pr->dmac_hit_sw ? BIT(30) : 0;
else
r[7] |= pr->content_too_deep ? BIT(30) : 0;
r[7] |= pr->not_first_frag ? BIT(29) : 0;
r[7] |= ((u32) (pr->frame_type_l4 & 0x7)) << 26;
r[7] |= ((u32) (pr->frame_type & 0x3)) << 24;
r[7] |= pr->otag_fmt ? BIT(23) : 0;
r[7] |= pr->itag_fmt ? BIT(22) : 0;
r[7] |= pr->otag_exist ? BIT(21) : 0;
r[7] |= pr->itag_exist ? BIT(20) : 0;
r[7] |= ((u32) (pr->frame_type_l2 & 0x3)) << 18;
r[7] |= pr->igr_normal_port ? BIT(17) : 0;
r[7] |= ((u32) (pr->tid & 0x1)) << 16;
r[14] |= pr->mgnt_vlan_m ? BIT(15) : 0;
if (pr->phase == PHASE_IACL)
r[14] |= pr->dmac_hit_sw_m ? BIT(14) : 0;
else
r[14] |= pr->content_too_deep_m ? BIT(14) : 0;
r[14] |= pr->not_first_frag_m ? BIT(13) : 0;
r[14] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 10;
r[14] |= ((u32) (pr->frame_type_m & 0x3)) << 8;
r[14] |= pr->otag_fmt_m ? BIT(7) : 0;
r[14] |= pr->itag_fmt_m ? BIT(6) : 0;
r[14] |= pr->otag_exist_m ? BIT(5) : 0;
r[14] |= pr->itag_exist_m ? BIT(4) : 0;
r[14] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 2;
r[14] |= pr->igr_normal_port_m ? BIT(1) : 0;
r[14] |= (u32) (pr->tid_m & 0x1);
r[15] |= pr->valid ? BIT(31) : 0;
r[15] |= pr->cond_not ? BIT(30) : 0;
r[15] |= pr->cond_and1 ? BIT(29) : 0;
r[15] |= pr->cond_and2 ? BIT(28) : 0;
}
static void rtl931x_write_pie_action(u32 r[], struct pie_rule *pr)
{
// Either drop or forward
if (pr->drop) {
r[15] |= BIT(11) | BIT(12) | BIT(13); // Do Green, Yellow and Red drops
// Actually DROP, not PERMIT in Green / Yellow / Red
r[16] |= BIT(27) | BIT(28) | BIT(29);
} else {
r[15] |= pr->fwd_sel ? BIT(14) : 0;
r[16] |= pr->fwd_act << 24;
r[16] |= BIT(21); // We overwrite any drop
}
if (pr->phase == PHASE_VACL)
r[16] |= pr->fwd_sa_lrn ? BIT(22) : 0;
r[15] |= pr->bypass_sel ? BIT(10) : 0;
r[15] |= pr->nopri_sel ? BIT(21) : 0;
r[15] |= pr->tagst_sel ? BIT(20) : 0;
r[15] |= pr->ovid_sel ? BIT(18) : 0;
r[15] |= pr->ivid_sel ? BIT(16) : 0;
r[15] |= pr->meter_sel ? BIT(27) : 0;
r[15] |= pr->mir_sel ? BIT(15) : 0;
r[15] |= pr->log_sel ? BIT(26) : 0;
r[16] |= ((u32)(pr->fwd_data & 0xfff)) << 9;
// r[15] |= pr->log_octets ? BIT(31) : 0;
r[15] |= (u32)(pr->meter_data) >> 2;
r[16] |= (((u32)(pr->meter_data) >> 7) & 0x3) << 29;
r[16] |= ((u32)(pr->ivid_act & 0x3)) << 21;
r[15] |= ((u32)(pr->ivid_data & 0xfff)) << 9;
r[16] |= ((u32)(pr->ovid_act & 0x3)) << 30;
r[16] |= ((u32)(pr->ovid_data & 0xfff)) << 16;
r[16] |= ((u32)(pr->mir_data & 0x3)) << 6;
r[17] |= ((u32)(pr->tagst_data & 0xf)) << 28;
r[17] |= ((u32)(pr->nopri_data & 0x7)) << 25;
r[17] |= pr->bypass_ibc_sc ? BIT(16) : 0;
}
void rtl931x_pie_rule_dump_raw(u32 r[])
{
pr_info("Raw IACL table entry:\n");
pr_info("r 0 - 7: %08x %08x %08x %08x %08x %08x %08x %08x\n",
r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]);
pr_info("r 8 - 15: %08x %08x %08x %08x %08x %08x %08x %08x\n",
r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]);
pr_info("r 16 - 18: %08x %08x %08x\n", r[16], r[17], r[18]);
pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
pr_info("Fixed : %06x\n", r[6] >> 8);
pr_info("Match M: %08x %08x %08x %08x %08x %08x\n",
(r[6] << 24) | (r[7] >> 8), (r[7] << 24) | (r[8] >> 8), (r[8] << 24) | (r[9] >> 8),
(r[9] << 24) | (r[10] >> 8), (r[10] << 24) | (r[11] >> 8),
(r[11] << 24) | (r[12] >> 8));
pr_info("R[13]: %08x\n", r[13]);
pr_info("Fixed M: %06x\n", ((r[12] << 16) | (r[13] >> 16)) & 0xffffff);
pr_info("Valid / not / and1 / and2 : %1x\n", (r[13] >> 12) & 0xf);
pr_info("r 13-16: %08x %08x %08x %08x\n", r[13], r[14], r[15], r[16]);
}
static int rtl931x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
{
// Access IACL table (0) via register 1, the table size is 4096
struct table_reg *q = rtl_table_get(RTL9310_TBL_1, 0);
u32 r[22];
int i;
int block = idx / PIE_BLOCK_SIZE;
u32 t_select = sw_r32(RTL931X_PIE_BLK_TMPLTE_CTRL(block));
pr_info("%s: %d, t_select: %08x\n", __func__, idx, t_select);
for (i = 0; i < 22; i++)
r[i] = 0;
if (!pr->valid) {
rtl_table_write(q, idx);
rtl_table_release(q);
return 0;
}
rtl931x_write_pie_fixed_fields(r, pr);
pr_info("%s: template %d\n", __func__, (t_select >> (pr->tid * 4)) & 0xf);
rtl931x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 4)) & 0xf]);
rtl931x_write_pie_action(r, pr);
rtl931x_pie_rule_dump_raw(r);
for (i = 0; i < 22; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
return 0;
}
static bool rtl931x_pie_templ_has(int t, enum template_field_id field_type)
{
int i;
enum template_field_id ft;
for (i = 0; i < N_FIXED_FIELDS_RTL931X; i++) {
ft = fixed_templates[t][i];
if (field_type == ft)
return true;
}
return false;
}
/*
* Verify that the rule pr is compatible with a given template t in block block
* Note that this function is SoC specific since the values of e.g. TEMPLATE_FIELD_SIP0
* depend on the SoC
*/
static int rtl931x_pie_verify_template(struct rtl838x_switch_priv *priv,
struct pie_rule *pr, int t, int block)
{
int i;
if (!pr->is_ipv6 && pr->sip_m && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
return -1;
if (!pr->is_ipv6 && pr->dip_m && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
return -1;
if (pr->is_ipv6) {
if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1]
|| pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3])
&& !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
return -1;
if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1]
|| pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3])
&& !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
return -1;
}
if (ether_addr_to_u64(pr->smac) && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
return -1;
if (ether_addr_to_u64(pr->dmac) && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
return -1;
// TODO: Check more
i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);
if (i >= PIE_BLOCK_SIZE)
return -1;
return i + PIE_BLOCK_SIZE * block;
}
static int rtl931x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
{
int idx, block, j, t;
int min_block = 0;
int max_block = priv->n_pie_blocks / 2;
if (pr->is_egress) {
min_block = max_block;
max_block = priv->n_pie_blocks;
}
pr_info("In %s\n", __func__);
mutex_lock(&priv->pie_mutex);
for (block = min_block; block < max_block; block++) {
for (j = 0; j < 2; j++) {
t = (sw_r32(RTL931X_PIE_BLK_TMPLTE_CTRL(block)) >> (j * 4)) & 0xf;
pr_info("Testing block %d, template %d, template id %d\n", block, j, t);
pr_info("%s: %08x\n",
__func__, sw_r32(RTL931X_PIE_BLK_TMPLTE_CTRL(block)));
idx = rtl931x_pie_verify_template(priv, pr, t, block);
if (idx >= 0)
break;
}
if (j < 2)
break;
}
if (block >= priv->n_pie_blocks) {
mutex_unlock(&priv->pie_mutex);
return -EOPNOTSUPP;
}
pr_info("Using block: %d, index %d, template-id %d\n", block, idx, j);
set_bit(idx, priv->pie_use_bm);
pr->valid = true;
pr->tid = j; // Mapped to template number
pr->tid_m = 0x1;
pr->id = idx;
rtl931x_pie_lookup_enable(priv, idx);
rtl931x_pie_rule_write(priv, idx, pr);
mutex_unlock(&priv->pie_mutex);
return 0;
}
/*
* Delete a range of Packet Inspection Engine rules
*/
static int rtl931x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
{
u32 v = (index_from << 1)| (index_to << 13 ) | BIT(0);
pr_info("%s: from %d to %d\n", __func__, index_from, index_to);
mutex_lock(&priv->reg_mutex);
// Write from-to and execute bit into control register
sw_w32(v, RTL931X_PIE_CLR_CTRL);
// Wait until command has completed
do {
} while (sw_r32(RTL931X_PIE_CLR_CTRL) & BIT(0));
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void rtl931x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
{
int idx = pr->id;
rtl931x_pie_rule_del(priv, idx, idx);
clear_bit(idx, priv->pie_use_bm);
}
static void rtl931x_pie_init(struct rtl838x_switch_priv *priv)
{
int i;
u32 template_selectors;
mutex_init(&priv->pie_mutex);
pr_info("%s\n", __func__);
// Enable ACL lookup on all ports, including CPU_PORT
for (i = 0; i <= priv->cpu_port; i++)
sw_w32(1, RTL931X_ACL_PORT_LOOKUP_CTRL(i));
// Include IPG in metering
sw_w32_mask(0, 1, RTL931X_METER_GLB_CTRL);
// Delete all present rules, block size is 128 on all SoC families
rtl931x_pie_rule_del(priv, 0, priv->n_pie_blocks * 128 - 1);
// Assign first half blocks 0-7 to VACL phase, second half to IACL
// 3 bits are used for each block, values for PIE blocks are
// 6: Disabled, 0: VACL, 1: IACL, 2: EACL
// And for OpenFlow Flow blocks: 3: Ingress Flow table 0,
// 4: Ingress Flow Table 3, 5: Egress flow table 0
for (i = 0; i < priv->n_pie_blocks; i++) {
int pos = (i % 10) * 3;
u32 r = RTL931X_PIE_BLK_PHASE_CTRL + 4 * (i / 10);
if (i < priv->n_pie_blocks / 2)
sw_w32_mask(0x7 << pos, 0, r);
else
sw_w32_mask(0x7 << pos, 1 << pos, r);
}
// Enable predefined templates 0, 1 for first quarter of all blocks
template_selectors = 0 | (1 << 4);
for (i = 0; i < priv->n_pie_blocks / 4; i++)
sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i));
// Enable predefined templates 2, 3 for second quarter of all blocks
template_selectors = 2 | (3 << 4);
for (i = priv->n_pie_blocks / 4; i < priv->n_pie_blocks / 2; i++)
sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i));
// Enable predefined templates 0, 1 for third quater of all blocks
template_selectors = 0 | (1 << 4);
for (i = priv->n_pie_blocks / 2; i < priv->n_pie_blocks * 3 / 4; i++)
sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i));
// Enable predefined templates 2, 3 for fourth quater of all blocks
template_selectors = 2 | (3 << 4);
for (i = priv->n_pie_blocks * 3 / 4; i < priv->n_pie_blocks; i++)
sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i));
}
int rtl931x_l3_setup(struct rtl838x_switch_priv *priv)
{
return 0;
}
void rtl931x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode)
{
if (type == PBVLAN_TYPE_INNER)
sw_w32_mask(0x3 << 12, mode << 12, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2));
else
sw_w32_mask(0x3 << 26, mode << 26, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2));
}
void rtl931x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid)
{
if (type == PBVLAN_TYPE_INNER)
sw_w32_mask(0xfff, pvid, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2));
else
sw_w32_mask(0xfff << 14, pvid << 14, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2));
}
static void rtl931x_set_igr_filter(int port, enum igr_filter state)
{
sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1),
RTL931X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2)));
}
static void rtl931x_set_egr_filter(int port, enum egr_filter state)
{
sw_w32_mask(0x1 << (port % 0x20), state << (port % 0x20),
RTL931X_VLAN_PORT_EGR_FLTR + (((port >> 5) << 2)));
}
void rtl931x_set_distribution_algorithm(int group, int algoidx, u32 algomsk)
{
u32 l3shift = 0;
u32 newmask = 0;
/* TODO: for now we set algoidx to 0 */
algoidx=0;
if (algomsk & TRUNK_DISTRIBUTION_ALGO_SIP_BIT) {
l3shift = 4;
newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SIP_BIT;
}
if (algomsk & TRUNK_DISTRIBUTION_ALGO_DIP_BIT) {
l3shift = 4;
newmask |= TRUNK_DISTRIBUTION_ALGO_L3_DIP_BIT;
}
if (algomsk & TRUNK_DISTRIBUTION_ALGO_SRC_L4PORT_BIT) {
l3shift = 4;
newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SRC_L4PORT_BIT;
}
if (algomsk & TRUNK_DISTRIBUTION_ALGO_SRC_L4PORT_BIT) {
l3shift = 4;
newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SRC_L4PORT_BIT;
}
if (l3shift == 4) {
if (algomsk & TRUNK_DISTRIBUTION_ALGO_SMAC_BIT)
newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SMAC_BIT;
if (algomsk & TRUNK_DISTRIBUTION_ALGO_DMAC_BIT)
newmask |= TRUNK_DISTRIBUTION_ALGO_L3_DMAC_BIT;
} else {
if (algomsk & TRUNK_DISTRIBUTION_ALGO_SMAC_BIT)
newmask |= TRUNK_DISTRIBUTION_ALGO_L2_SMAC_BIT;
if (algomsk & TRUNK_DISTRIBUTION_ALGO_DMAC_BIT)
newmask |= TRUNK_DISTRIBUTION_ALGO_L2_DMAC_BIT;
}
sw_w32(newmask << l3shift, RTL931X_TRK_HASH_CTRL + (algoidx << 2));
}
static void rtl931x_led_init(struct rtl838x_switch_priv *priv)
{
int i, pos;
u32 v, set;
u64 pm_copper = 0, pm_fiber = 0;
u32 setlen;
const __be32 *led_set;
char set_name[9];
struct device_node *node;
pr_info("%s called\n", __func__);
node = of_find_compatible_node(NULL, NULL, "realtek,rtl9300-leds");
if (!node) {
pr_info("%s No compatible LED node found\n", __func__);
return;
}
for (i= 0; i < priv->cpu_port; i++) {
pos = (i << 1) % 32;
sw_w32_mask(0x3 << pos, 0, RTL931X_LED_PORT_FIB_SET_SEL_CTRL(i));
sw_w32_mask(0x3 << pos, 0, RTL931X_LED_PORT_COPR_SET_SEL_CTRL(i));
if (!priv->ports[i].phy)
continue;
v = 0x1; // Found on the EdgeCore, but we do not have any HW description
sw_w32_mask(0x3 << pos, v << pos, RTL931X_LED_PORT_NUM_CTRL(i));
if (priv->ports[i].phy_is_integrated)
pm_fiber |= BIT_ULL(i);
else
pm_copper |= BIT_ULL(i);
set = priv->ports[i].led_set;
sw_w32_mask(0, set << pos, RTL931X_LED_PORT_COPR_SET_SEL_CTRL(i));
sw_w32_mask(0, set << pos, RTL931X_LED_PORT_FIB_SET_SEL_CTRL(i));
}
for (i = 0; i < 4; i++) {
sprintf(set_name, "led_set%d", i);
pr_info(">%s<\n", set_name);
led_set = of_get_property(node, set_name, &setlen);
if (!led_set || setlen != 16)
break;
v = be32_to_cpup(led_set) << 16 | be32_to_cpup(led_set + 1);
sw_w32(v, RTL931X_LED_SET0_0_CTRL - 4 - i * 8);
v = be32_to_cpup(led_set + 2) << 16 | be32_to_cpup(led_set + 3);
sw_w32(v, RTL931X_LED_SET0_0_CTRL - i * 8);
}
// Set LED mode to serial (0x1)
sw_w32_mask(0x3, 0x1, RTL931X_LED_GLB_CTRL);
rtl839x_set_port_reg_le(pm_copper, RTL931X_LED_PORT_COPR_MASK_CTRL);
rtl839x_set_port_reg_le(pm_fiber, RTL931X_LED_PORT_FIB_MASK_CTRL);
rtl839x_set_port_reg_le(pm_copper | pm_fiber, RTL931X_LED_PORT_COMBO_MASK_CTRL);
for (i = 0; i < 32; i++)
pr_info("%s %08x: %08x\n",__func__, 0xbb000600 + i * 4, sw_r32(0x0600 + i * 4));
}
const struct rtl838x_reg rtl931x_reg = {
.mask_port_reg_be = rtl839x_mask_port_reg_be,
.set_port_reg_be = rtl839x_set_port_reg_be,
.get_port_reg_be = rtl839x_get_port_reg_be,
.mask_port_reg_le = rtl839x_mask_port_reg_le,
.set_port_reg_le = rtl839x_set_port_reg_le,
.get_port_reg_le = rtl839x_get_port_reg_le,
.stat_port_rst = RTL931X_STAT_PORT_RST,
.stat_rst = RTL931X_STAT_RST,
.stat_port_std_mib = 0, // Not defined
.traffic_enable = rtl931x_traffic_enable,
.traffic_disable = rtl931x_traffic_disable,
.traffic_get = rtl931x_traffic_get,
.traffic_set = rtl931x_traffic_set,
.l2_ctrl_0 = RTL931X_L2_CTRL,
.l2_ctrl_1 = RTL931X_L2_AGE_CTRL,
.l2_port_aging_out = RTL931X_L2_PORT_AGE_CTRL,
.set_ageing_time = rtl931x_set_ageing_time,
// .smi_poll_ctrl does not exist
.l2_tbl_flush_ctrl = RTL931X_L2_TBL_FLUSH_CTRL,
.exec_tbl0_cmd = rtl931x_exec_tbl0_cmd,
.exec_tbl1_cmd = rtl931x_exec_tbl1_cmd,
.tbl_access_data_0 = rtl931x_tbl_access_data_0,
.isr_glb_src = RTL931X_ISR_GLB_SRC,
.isr_port_link_sts_chg = RTL931X_ISR_PORT_LINK_STS_CHG,
.imr_port_link_sts_chg = RTL931X_IMR_PORT_LINK_STS_CHG,
// imr_glb does not exist on RTL931X
.vlan_tables_read = rtl931x_vlan_tables_read,
.vlan_set_tagged = rtl931x_vlan_set_tagged,
.vlan_set_untagged = rtl931x_vlan_set_untagged,
.vlan_profile_dump = rtl931x_vlan_profile_dump,
.vlan_profile_setup = rtl931x_vlan_profile_setup,
.vlan_fwd_on_inner = rtl931x_vlan_fwd_on_inner,
.stp_get = rtl931x_stp_get,
.stp_set = rtl931x_stp_set,
.mac_force_mode_ctrl = rtl931x_mac_force_mode_ctrl,
.mac_port_ctrl = rtl931x_mac_port_ctrl,
.l2_port_new_salrn = rtl931x_l2_port_new_salrn,
.l2_port_new_sa_fwd = rtl931x_l2_port_new_sa_fwd,
.mir_ctrl = RTL931X_MIR_CTRL,
.mir_dpm = RTL931X_MIR_DPM_CTRL,
.mir_spm = RTL931X_MIR_SPM_CTRL,
.mac_link_sts = RTL931X_MAC_LINK_STS,
.mac_link_dup_sts = RTL931X_MAC_LINK_DUP_STS,
.mac_link_spd_sts = rtl931x_mac_link_spd_sts,
.mac_rx_pause_sts = RTL931X_MAC_RX_PAUSE_STS,
.mac_tx_pause_sts = RTL931X_MAC_TX_PAUSE_STS,
.read_l2_entry_using_hash = rtl931x_read_l2_entry_using_hash,
.write_l2_entry_using_hash = rtl931x_write_l2_entry_using_hash,
.read_cam = rtl931x_read_cam,
.write_cam = rtl931x_write_cam,
.vlan_port_tag_sts_ctrl = RTL931X_VLAN_PORT_TAG_CTRL,
.vlan_port_pvidmode_set = rtl931x_vlan_port_pvidmode_set,
.vlan_port_pvid_set = rtl931x_vlan_port_pvid_set,
.trk_mbr_ctr = rtl931x_trk_mbr_ctr,
.set_vlan_igr_filter = rtl931x_set_igr_filter,
.set_vlan_egr_filter = rtl931x_set_egr_filter,
.set_distribution_algorithm = rtl931x_set_distribution_algorithm,
.l2_hash_key = rtl931x_l2_hash_key,
.read_mcast_pmask = rtl931x_read_mcast_pmask,
.write_mcast_pmask = rtl931x_write_mcast_pmask,
.pie_init = rtl931x_pie_init,
.pie_rule_write = rtl931x_pie_rule_write,
.pie_rule_add = rtl931x_pie_rule_add,
.pie_rule_rm = rtl931x_pie_rule_rm,
.l2_learning_setup = rtl931x_l2_learning_setup,
.l3_setup = rtl931x_l3_setup,
.led_init = rtl931x_led_init,
};