Initial commit

This commit is contained in:
domenico
2025-06-24 13:14:22 +02:00
commit 4002f145fc
9002 changed files with 1731834 additions and 0 deletions

View File

@@ -0,0 +1,5 @@
#
# Makefile for the rtl838x specific parts of the kernel
#
obj-y := setup.o prom.o irq.o

View File

@@ -0,0 +1,6 @@
#
# Realtek RTL838x SoCs
#
platform-$(CONFIG_RTL838X) += rtl838x/
cflags-$(CONFIG_RTL838X) += -I$(srctree)/arch/mips/include/asm/mach-rtl838x/
load-$(CONFIG_RTL838X) += 0xffffffff80000000

View File

@@ -0,0 +1,226 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Realtek RTL83XX architecture specific IRQ handling
*
* based on the original BSP
* Copyright (C) 2006-2012 Tony Wu (tonywu@realtek.com)
* Copyright (C) 2020 B. Koblitz
* Copyright (C) 2020 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2020 John Crispin <john@phrozen.org>
*/
#include <linux/irqchip.h>
#include <linux/spinlock.h>
#include <linux/of_address.h>
#include <asm/irq_cpu.h>
#include <linux/of_irq.h>
#include <asm/cevt-r4k.h>
#include <mach-rtl83xx.h>
#include "irq.h"
#define REALTEK_CPU_IRQ_SHARED0 (MIPS_CPU_IRQ_BASE + 2)
#define REALTEK_CPU_IRQ_UART (MIPS_CPU_IRQ_BASE + 3)
#define REALTEK_CPU_IRQ_SWITCH (MIPS_CPU_IRQ_BASE + 4)
#define REALTEK_CPU_IRQ_SHARED1 (MIPS_CPU_IRQ_BASE + 5)
#define REALTEK_CPU_IRQ_EXTERNAL (MIPS_CPU_IRQ_BASE + 6)
#define REALTEK_CPU_IRQ_COUNTER (MIPS_CPU_IRQ_BASE + 7)
#define REG(x) (rtl83xx_ictl_base + x)
extern struct rtl83xx_soc_info soc_info;
static DEFINE_RAW_SPINLOCK(irq_lock);
static void __iomem *rtl83xx_ictl_base;
static void rtl83xx_ictl_enable_irq(struct irq_data *i)
{
unsigned long flags;
u32 value;
raw_spin_lock_irqsave(&irq_lock, flags);
value = rtl83xx_r32(REG(RTL83XX_ICTL_GIMR));
value |= BIT(i->hwirq);
rtl83xx_w32(value, REG(RTL83XX_ICTL_GIMR));
raw_spin_unlock_irqrestore(&irq_lock, flags);
}
static void rtl83xx_ictl_disable_irq(struct irq_data *i)
{
unsigned long flags;
u32 value;
raw_spin_lock_irqsave(&irq_lock, flags);
value = rtl83xx_r32(REG(RTL83XX_ICTL_GIMR));
value &= ~BIT(i->hwirq);
rtl83xx_w32(value, REG(RTL83XX_ICTL_GIMR));
raw_spin_unlock_irqrestore(&irq_lock, flags);
}
static struct irq_chip rtl83xx_ictl_irq = {
.name = "RTL83xx",
.irq_enable = rtl83xx_ictl_enable_irq,
.irq_disable = rtl83xx_ictl_disable_irq,
.irq_ack = rtl83xx_ictl_disable_irq,
.irq_mask = rtl83xx_ictl_disable_irq,
.irq_unmask = rtl83xx_ictl_enable_irq,
.irq_eoi = rtl83xx_ictl_enable_irq,
};
static int intc_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw)
{
irq_set_chip_and_handler(hw, &rtl83xx_ictl_irq, handle_level_irq);
return 0;
}
static const struct irq_domain_ops irq_domain_ops = {
.map = intc_map,
.xlate = irq_domain_xlate_onecell,
};
static void rtl838x_irq_dispatch(struct irq_desc *desc)
{
unsigned int pending = rtl83xx_r32(REG(RTL83XX_ICTL_GIMR)) &
rtl83xx_r32(REG(RTL83XX_ICTL_GISR));
if (pending) {
struct irq_domain *domain = irq_desc_get_handler_data(desc);
generic_handle_irq(irq_find_mapping(domain, __ffs(pending)));
} else {
spurious_interrupt();
}
}
asmlinkage void plat_rtl83xx_irq_dispatch(void)
{
unsigned int pending;
pending = read_c0_cause() & read_c0_status() & ST0_IM;
if (pending & CAUSEF_IP7)
do_IRQ(REALTEK_CPU_IRQ_COUNTER);
else if (pending & CAUSEF_IP6)
do_IRQ(REALTEK_CPU_IRQ_EXTERNAL);
else if (pending & CAUSEF_IP5)
do_IRQ(REALTEK_CPU_IRQ_SHARED1);
else if (pending & CAUSEF_IP4)
do_IRQ(REALTEK_CPU_IRQ_SWITCH);
else if (pending & CAUSEF_IP3)
do_IRQ(REALTEK_CPU_IRQ_UART);
else if (pending & CAUSEF_IP2)
do_IRQ(REALTEK_CPU_IRQ_SHARED0);
else
spurious_interrupt();
}
static int icu_setup_domain(struct device_node *node)
{
struct irq_domain *domain;
domain = irq_domain_add_simple(node, 32, 0,
&irq_domain_ops, NULL);
irq_set_chained_handler_and_data(2, rtl838x_irq_dispatch, domain);
irq_set_chained_handler_and_data(3, rtl838x_irq_dispatch, domain);
irq_set_chained_handler_and_data(4, rtl838x_irq_dispatch, domain);
irq_set_chained_handler_and_data(5, rtl838x_irq_dispatch, domain);
rtl83xx_ictl_base = of_iomap(node, 0);
if (!rtl83xx_ictl_base)
return -EINVAL;
return 0;
}
static void __init rtl8380_icu_of_init(struct device_node *node, struct device_node *parent)
{
if (icu_setup_domain(node))
return;
/* Disable all cascaded interrupts */
rtl83xx_w32(0, REG(RTL83XX_ICTL_GIMR));
/* Set up interrupt routing */
rtl83xx_w32(RTL83XX_IRR0_SETTING, REG(RTL83XX_IRR0));
rtl83xx_w32(RTL83XX_IRR1_SETTING, REG(RTL83XX_IRR1));
rtl83xx_w32(RTL83XX_IRR2_SETTING, REG(RTL83XX_IRR2));
rtl83xx_w32(RTL83XX_IRR3_SETTING, REG(RTL83XX_IRR3));
/* Clear timer interrupt */
write_c0_compare(0);
/* Enable all CPU interrupts */
write_c0_status(read_c0_status() | ST0_IM);
/* Enable timer0 and uart0 interrupts */
rtl83xx_w32(BIT(RTL83XX_IRQ_TC0) | BIT(RTL83XX_IRQ_UART0), REG(RTL83XX_ICTL_GIMR));
}
static void __init rtl8390_icu_of_init(struct device_node *node, struct device_node *parent)
{
if (icu_setup_domain(node))
return;
/* Disable all cascaded interrupts */
rtl83xx_w32(0, REG(RTL83XX_ICTL_GIMR));
/* Set up interrupt routing */
rtl83xx_w32(RTL83XX_IRR0_SETTING, REG(RTL83XX_IRR0));
rtl83xx_w32(RTL8390_IRR1_SETTING, REG(RTL83XX_IRR1));
rtl83xx_w32(RTL83XX_IRR2_SETTING, REG(RTL83XX_IRR2));
rtl83xx_w32(RTL83XX_IRR3_SETTING, REG(RTL83XX_IRR3));
/* Clear timer interrupt */
write_c0_compare(0);
/* Enable all CPU interrupts */
write_c0_status(read_c0_status() | ST0_IM);
/* Enable timer0 and uart0 interrupts */
rtl83xx_w32(BIT(RTL83XX_IRQ_TC0) | BIT(RTL83XX_IRQ_UART0), REG(RTL83XX_ICTL_GIMR));
}
static void __init rtl9300_icu_of_init(struct device_node *node, struct device_node *parent)
{
pr_info("RTL9300: Setting up IRQs\n");
if (icu_setup_domain(node))
return;
/* Disable all cascaded interrupts */
rtl83xx_w32(0, REG(RTL83XX_ICTL_GIMR));
/* Set up interrupt routing */
rtl83xx_w32(RTL9300_IRR0_SETTING, REG(RTL83XX_IRR0));
rtl83xx_w32(RTL9300_IRR1_SETTING, REG(RTL83XX_IRR1));
rtl83xx_w32(RTL9300_IRR2_SETTING, REG(RTL83XX_IRR2));
rtl83xx_w32(RTL9300_IRR3_SETTING, REG(RTL83XX_IRR3));
/* Clear timer interrupt */
write_c0_compare(0);
/* Enable all CPU interrupts */
write_c0_status(read_c0_status() | ST0_IM);
}
static struct of_device_id __initdata of_irq_ids[] = {
{ .compatible = "mti,cpu-interrupt-controller", .data = mips_cpu_irq_of_init },
{ .compatible = "realtek,rt8380-intc", .data = rtl8380_icu_of_init },
{ .compatible = "realtek,rt8390-intc", .data = rtl8390_icu_of_init },
{ .compatible = "realtek,rt9300-intc", .data = rtl9300_icu_of_init },
{},
};
void __init arch_init_irq(void)
{
of_irq_init(of_irq_ids);
}

View File

@@ -0,0 +1,183 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* prom.c
* Early intialization code for the Realtek RTL838X SoC
*
* based on the original BSP by
* Copyright (C) 2006-2012 Tony Wu (tonywu@realtek.com)
* Copyright (C) 2020 B. Koblitz
*
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
#include <asm/bootinfo.h>
#include <asm/addrspace.h>
#include <asm/page.h>
#include <asm/cpu.h>
#include <mach-rtl83xx.h>
extern char arcs_cmdline[];
extern const char __appended_dtb;
struct rtl83xx_soc_info soc_info;
const void *fdt;
const char *get_system_type(void)
{
return soc_info.name;
}
void __init prom_free_prom_memory(void)
{
}
void __init device_tree_init(void)
{
if (!fdt_check_header(&__appended_dtb)) {
fdt = &__appended_dtb;
pr_info("Using appended Device Tree.\n");
}
initial_boot_params = (void *)fdt;
unflatten_and_copy_device_tree();
}
static void __init prom_init_cmdline(void)
{
int argc = fw_arg0;
char **argv = (char **) KSEG1ADDR(fw_arg1);
int i;
arcs_cmdline[0] = '\0';
for (i = 0; i < argc; i++) {
char *p = (char *) KSEG1ADDR(argv[i]);
if (CPHYSADDR(p) && *p) {
strlcat(arcs_cmdline, p, sizeof(arcs_cmdline));
strlcat(arcs_cmdline, " ", sizeof(arcs_cmdline));
}
}
pr_info("Kernel command line: %s\n", arcs_cmdline);
}
void __init identify_rtl9302(void)
{
switch (sw_r32(RTL93XX_MODEL_NAME_INFO) & 0xfffffff0) {
case 0x93020810:
soc_info.name = "RTL9302A 12x2.5G";
break;
case 0x93021010:
soc_info.name = "RTL9302B 8x2.5G";
break;
case 0x93021810:
soc_info.name = "RTL9302C 16x2.5G";
break;
case 0x93022010:
soc_info.name = "RTL9302D 24x2.5G";
break;
case 0x93020800:
soc_info.name = "RTL9302A";
break;
case 0x93021000:
soc_info.name = "RTL9302B";
break;
case 0x93021800:
soc_info.name = "RTL9302C";
break;
case 0x93022000:
soc_info.name = "RTL9302D";
break;
case 0x93023001:
soc_info.name = "RTL9302F";
break;
default:
soc_info.name = "RTL9302";
}
}
void __init prom_init(void)
{
uint32_t model;
/* uart0 */
setup_8250_early_printk_port(0xb8002000, 2, 0);
model = sw_r32(RTL838X_MODEL_NAME_INFO);
pr_info("RTL838X model is %x\n", model);
model = model >> 16 & 0xFFFF;
if ((model != 0x8328) && (model != 0x8330) && (model != 0x8332)
&& (model != 0x8380) && (model != 0x8382)) {
model = sw_r32(RTL839X_MODEL_NAME_INFO);
pr_info("RTL839X model is %x\n", model);
model = model >> 16 & 0xFFFF;
}
if ((model & 0x8390) != 0x8380 && (model & 0x8390) != 0x8390) {
model = sw_r32(RTL93XX_MODEL_NAME_INFO);
pr_info("RTL93XX model is %x\n", model);
model = model >> 16 & 0xFFFF;
}
soc_info.id = model;
switch (model) {
case 0x8328:
soc_info.name = "RTL8328";
soc_info.family = RTL8328_FAMILY_ID;
break;
case 0x8332:
soc_info.name = "RTL8332";
soc_info.family = RTL8380_FAMILY_ID;
break;
case 0x8380:
soc_info.name = "RTL8380";
soc_info.family = RTL8380_FAMILY_ID;
break;
case 0x8382:
soc_info.name = "RTL8382";
soc_info.family = RTL8380_FAMILY_ID;
break;
case 0x8390:
soc_info.name = "RTL8390";
soc_info.family = RTL8390_FAMILY_ID;
break;
case 0x8391:
soc_info.name = "RTL8391";
soc_info.family = RTL8390_FAMILY_ID;
break;
case 0x8392:
soc_info.name = "RTL8392";
soc_info.family = RTL8390_FAMILY_ID;
break;
case 0x8393:
soc_info.name = "RTL8393";
soc_info.family = RTL8390_FAMILY_ID;
break;
case 0x9301:
soc_info.name = "RTL9301";
soc_info.family = RTL9300_FAMILY_ID;
break;
case 0x9302:
identify_rtl9302();
soc_info.family = RTL9300_FAMILY_ID;
break;
case 0x9313:
soc_info.name = "RTL9313";
soc_info.family = RTL9310_FAMILY_ID;
break;
default:
soc_info.name = "DEFAULT";
soc_info.family = 0;
}
pr_info("SoC Type: %s\n", get_system_type());
prom_init_cmdline();
}

View File

@@ -0,0 +1,195 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Setup for the Realtek RTL838X SoC:
* Memory, Timer and Serial
*
* Copyright (C) 2020 B. Koblitz
* based on the original BSP by
* Copyright (C) 2006-2012 Tony Wu (tonywu@realtek.com)
*
*/
#include <linux/console.h>
#include <linux/init.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/of_fdt.h>
#include <asm/addrspace.h>
#include <asm/io.h>
#include <asm/bootinfo.h>
#include <asm/reboot.h>
#include <asm/time.h>
#include <asm/prom.h>
#include <asm/smp-ops.h>
#include "mach-rtl83xx.h"
extern struct rtl83xx_soc_info soc_info;
u32 pll_reset_value;
static void rtl838x_restart(char *command)
{
u32 pll = sw_r32(RTL838X_PLL_CML_CTRL);
pr_info("System restart.\n");
pr_info("PLL control register: %x, applying reset value %x\n",
pll, pll_reset_value);
sw_w32(3, RTL838X_INT_RW_CTRL);
sw_w32(pll_reset_value, RTL838X_PLL_CML_CTRL);
sw_w32(0, RTL838X_INT_RW_CTRL);
/* Reset Global Control1 Register */
sw_w32(1, RTL838X_RST_GLB_CTRL_1);
}
static void rtl839x_restart(char *command)
{
/* SoC reset vector (in flash memory): on RTL839x platform preferred way to reset */
void (*f)(void) = (void *) 0xbfc00000;
pr_info("System restart.\n");
/* Reset SoC */
sw_w32(0xFFFFFFFF, RTL839X_RST_GLB_CTRL);
/* and call reset vector */
f();
/* If this fails, halt the CPU */
while
(1);
}
static void rtl930x_restart(char *command)
{
pr_info("System restart.\n");
sw_w32(0x1, RTL930X_RST_GLB_CTRL_0);
while
(1);
}
static void rtl931x_restart(char *command)
{
u32 v;
pr_info("System restart.\n");
sw_w32(1, RTL931X_RST_GLB_CTRL);
v = sw_r32(RTL931X_RST_GLB_CTRL);
sw_w32(0x101, RTL931X_RST_GLB_CTRL);
msleep(15);
sw_w32(v, RTL931X_RST_GLB_CTRL);
msleep(15);
sw_w32(0x101, RTL931X_RST_GLB_CTRL);
}
static void rtl838x_halt(void)
{
pr_info("System halted.\n");
while
(1);
}
static void __init rtl838x_setup(void)
{
pr_info("Registering _machine_restart\n");
_machine_restart = rtl838x_restart;
_machine_halt = rtl838x_halt;
/* This PLL value needs to be restored before a reset and will then be
* preserved over a SoC reset. A wrong value prevents the SoC from
* connecting to the SPI flash controller at boot and reading the
* reset routine */
pll_reset_value = sw_r32(RTL838X_PLL_CML_CTRL);
/* Setup System LED. Bit 15 then allows to toggle it */
sw_w32_mask(0, 3 << 16, RTL838X_LED_GLB_CTRL);
}
static void __init rtl839x_setup(void)
{
pr_info("Registering _machine_restart\n");
_machine_restart = rtl839x_restart;
_machine_halt = rtl838x_halt;
/* Setup System LED. Bit 14 of RTL839X_LED_GLB_CTRL then allows to toggle it */
sw_w32_mask(0, 3 << 15, RTL839X_LED_GLB_CTRL);
}
static void __init rtl930x_setup(void)
{
pr_info("Registering _machine_restart\n");
_machine_restart = rtl930x_restart;
_machine_halt = rtl838x_halt;
if (soc_info.id == 0x9302)
sw_w32_mask(0, 3 << 13, RTL9302_LED_GLB_CTRL);
else
sw_w32_mask(0, 3 << 13, RTL930X_LED_GLB_CTRL);
}
static void __init rtl931x_setup(void)
{
pr_info("Registering _machine_restart\n");
_machine_restart = rtl931x_restart;
_machine_halt = rtl838x_halt;
sw_w32_mask(0, 3 << 12, RTL931X_LED_GLB_CTRL);
}
void __init plat_mem_setup(void)
{
void *dtb;
set_io_port_base(KSEG1);
_machine_restart = rtl838x_restart;
if (fw_passed_dtb) /* UHI interface */
dtb = (void *)fw_passed_dtb;
else if (__dtb_start != __dtb_end)
dtb = (void *)__dtb_start;
else
panic("no dtb found");
/*
* Load the devicetree. This causes the chosen node to be
* parsed resulting in our memory appearing
*/
__dt_setup_arch(dtb);
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
rtl838x_setup();
break;
case RTL8390_FAMILY_ID:
rtl839x_setup();
break;
case RTL9300_FAMILY_ID:
rtl930x_setup();
break;
case RTL9310_FAMILY_ID:
rtl931x_setup();
break;
}
}
void __init plat_time_init(void)
{
struct device_node *np;
u32 freq = 500000000;
of_clk_init(NULL);
timer_probe();
np = of_find_node_by_name(NULL, "cpus");
if (!np) {
pr_err("Missing 'cpus' DT node, using default frequency.");
} else {
if (of_property_read_u32(np, "frequency", &freq) < 0)
pr_err("No 'frequency' property in DT, using default.");
else
pr_info("CPU frequency from device tree: %dMHz", freq / 1000000);
of_node_put(np);
}
mips_hpt_frequency = freq / 2;
}