realtek: update the tree to the latest refactored version

* rename the target to realtek
* add refactored DSA driver
* add latest gpio driver
* lots of arch cleanups
* new irq driver
* additional boards

Signed-off-by: Bert Vermeulen <bert@biot.com>
Signed-off-by: Birger Koblitz <mail@birger-koblitz.de>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: John Crispin <john@phrozen.org>
This commit is contained in:
John Crispin
2020-11-26 12:02:21 +01:00
parent 4e39949dd1
commit 2b88563ee5
62 changed files with 4571 additions and 4255 deletions

View File

@@ -0,0 +1,34 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef RTL838X_IOREMAP_H_
#define RTL838X_IOREMAP_H_
static inline phys_addr_t fixup_bigphys_addr(phys_addr_t phys_addr, phys_addr_t size)
{
return phys_addr;
}
static inline int is_rtl838x_internal_registers(phys_addr_t offset)
{
/* IO-Block */
if (offset >= 0xb8000000 && offset < 0xb9000000)
return 1;
/* Switch block */
if (offset >= 0xbb000000 && offset < 0xbc000000)
return 1;
return 0;
}
static inline void __iomem *plat_ioremap(phys_addr_t offset, unsigned long size,
unsigned long flags)
{
if (is_rtl838x_internal_registers(offset))
return (void __iomem *)offset;
return NULL;
}
static inline int plat_iounmap(const volatile void __iomem *addr)
{
return is_rtl838x_internal_registers((unsigned long)addr);
}
#endif

View File

@@ -0,0 +1,66 @@
// SPDX-License-Identifier: GPL-2.0-only
#ifndef _RTL83XX_IRQ_H_
#define _RTL83XX_IRQ_H_
#define NR_IRQS 32
#include_next <irq.h>
/* Global Interrupt Mask Register */
#define RTL83XX_ICTL_GIMR 0x00
/* Global Interrupt Status Register */
#define RTL83XX_ICTL_GISR 0x04
#define RTL83XX_IRQ_CPU_BASE 0
#define RTL83XX_IRQ_CPU_NUM 8
#define RTL83XX_IRQ_ICTL_BASE (RTL83XX_IRQ_CPU_BASE + RTL83XX_IRQ_CPU_NUM)
#define RTL83XX_IRQ_ICTL_NUM 32
/* Cascaded interrupts */
#define RTL83XX_ICTL1_IRQ (RTL83XX_IRQ_CPU_BASE + 2)
#define RTL83XX_ICTL2_IRQ (RTL83XX_IRQ_CPU_BASE + 3)
#define RTL83XX_ICTL3_IRQ (RTL83XX_IRQ_CPU_BASE + 4)
#define RTL83XX_ICTL4_IRQ (RTL83XX_IRQ_CPU_BASE + 5)
#define RTL83XX_ICTL5_IRQ (RTL83XX_IRQ_CPU_BASE + 6)
/* Interrupt routing register */
#define RTL83XX_IRR0 0x08
#define RTL83XX_IRR1 0x0c
#define RTL83XX_IRR2 0x10
#define RTL83XX_IRR3 0x14
/* Cascade map */
#define UART0_CASCADE 2
#define UART1_CASCADE 1
#define TC0_CASCADE 5
#define TC1_CASCADE 1
#define OCPTO_CASCADE 1
#define HLXTO_CASCADE 1
#define SLXTO_CASCADE 1
#define NIC_CASCADE 4
#define GPIO_ABCD_CASCADE 4
#define GPIO_EFGH_CASCADE 4
#define RTC_CASCADE 4
#define SWCORE_CASCADE 3
#define WDT_IP1_CASCADE 4
#define WDT_IP2_CASCADE 5
/* Pack cascade map into interrupt routing registers */
#define RTL83XX_IRR0_SETTING (\
(UART0_CASCADE << 28) | \
(UART1_CASCADE << 24) | \
(TC0_CASCADE << 20) | \
(TC1_CASCADE << 16) | \
(OCPTO_CASCADE << 12) | \
(HLXTO_CASCADE << 8) | \
(SLXTO_CASCADE << 4) | \
(NIC_CASCADE << 0))
#define RTL83XX_IRR1_SETTING (\
(GPIO_ABCD_CASCADE << 28) | \
(GPIO_EFGH_CASCADE << 24) | \
(RTC_CASCADE << 20) | \
(SWCORE_CASCADE << 16))
#define RTL83XX_IRR2_SETTING 0
#define RTL83XX_IRR3_SETTING 0
#endif /* _RTL83XX_IRQ_H_ */

View File

@@ -0,0 +1,458 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2006-2012 Tony Wu (tonywu@realtek.com)
* Copyright (C) 2020 B. Koblitz
*/
#ifndef _MACH_RTL838X_H_
#define _MACH_RTL838X_H_
#include <asm/types.h>
/*
* Register access macros
*/
#define RTL838X_SW_BASE ((volatile void *) 0xBB000000)
#define rtl83xx_r32(reg) readl(reg)
#define rtl83xx_w32(val, reg) writel(val, reg)
#define rtl83xx_w32_mask(clear, set, reg) rtl83xx_w32((rtl83xx_r32(reg) & ~(clear)) | (set), reg)
#define rtl83xx_r8(reg) readb(reg)
#define rtl83xx_w8(val, reg) writeb(val, reg)
#define sw_r32(reg) readl(RTL838X_SW_BASE + reg)
#define sw_w32(val, reg) writel(val, RTL838X_SW_BASE + reg)
#define sw_w32_mask(clear, set, reg) \
sw_w32((sw_r32(reg) & ~(clear)) | (set), reg)
#define sw_r64(reg) ((((u64)readl(RTL838X_SW_BASE + reg)) << 32) | \
readl(RTL838X_SW_BASE + reg + 4))
#define sw_w64(val, reg) do { \
writel((u32)((val) >> 32), RTL838X_SW_BASE + reg); \
writel((u32)((val) & 0xffffffff), \
RTL838X_SW_BASE + reg + 4); \
} while (0)
/*
* SPRAM
*/
#define RTL838X_ISPRAM_BASE 0x0
#define RTL838X_DSPRAM_BASE 0x0
/*
* IRQ Controller
*/
#define RTL838X_IRQ_CPU_BASE 0
#define RTL838X_IRQ_CPU_NUM 8
#define RTL838X_IRQ_ICTL_BASE (RTL838X_IRQ_CPU_BASE + RTL838X_IRQ_CPU_NUM)
#define RTL838X_IRQ_ICTL_NUM 32
#define RTL83XX_IRQ_UART0 31
#define RTL83XX_IRQ_UART1 30
#define RTL83XX_IRQ_TC0 29
#define RTL83XX_IRQ_TC1 28
#define RTL83XX_IRQ_OCPTO 27
#define RTL83XX_IRQ_HLXTO 26
#define RTL83XX_IRQ_SLXTO 25
#define RTL83XX_IRQ_NIC 24
#define RTL83XX_IRQ_GPIO_ABCD 23
#define RTL83XX_IRQ_GPIO_EFGH 22
#define RTL83XX_IRQ_RTC 21
#define RTL83XX_IRQ_SWCORE 20
#define RTL83XX_IRQ_WDT_IP1 19
#define RTL83XX_IRQ_WDT_IP2 18
/*
* MIPS32R2 counter
*/
#define RTL838X_COMPARE_IRQ (RTL838X_IRQ_CPU_BASE + 7)
/*
* ICTL
* Base address 0xb8003000UL
*/
#define RTL838X_ICTL1_IRQ (RTL838X_IRQ_CPU_BASE + 2)
#define RTL838X_ICTL2_IRQ (RTL838X_IRQ_CPU_BASE + 3)
#define RTL838X_ICTL3_IRQ (RTL838X_IRQ_CPU_BASE + 4)
#define RTL838X_ICTL4_IRQ (RTL838X_IRQ_CPU_BASE + 5)
#define RTL838X_ICTL5_IRQ (RTL838X_IRQ_CPU_BASE + 6)
#define GIMR (0x00)
#define UART0_IE (1 << 31)
#define UART1_IE (1 << 30)
#define TC0_IE (1 << 29)
#define TC1_IE (1 << 28)
#define OCPTO_IE (1 << 27)
#define HLXTO_IE (1 << 26)
#define SLXTO_IE (1 << 25)
#define NIC_IE (1 << 24)
#define GPIO_ABCD_IE (1 << 23)
#define GPIO_EFGH_IE (1 << 22)
#define RTC_IE (1 << 21)
#define WDT_IP1_IE (1 << 19)
#define WDT_IP2_IE (1 << 18)
#define GISR (0x04)
#define UART0_IP (1 << 31)
#define UART1_IP (1 << 30)
#define TC0_IP (1 << 29)
#define TC1_IP (1 << 28)
#define OCPTO_IP (1 << 27)
#define HLXTO_IP (1 << 26)
#define SLXTO_IP (1 << 25)
#define NIC_IP (1 << 24)
#define GPIO_ABCD_IP (1 << 23)
#define GPIO_EFGH_IP (1 << 22)
#define RTC_IP (1 << 21)
#define WDT_IP1_IP (1 << 19)
#define WDT_IP2_IP (1 << 18)
#define IRR0 (0x08)
#define IRR0_SETTING ((UART0_RS << 28) | \
(UART1_RS << 24) | \
(TC0_RS << 20) | \
(TC1_RS << 16) | \
(OCPTO_RS << 12) | \
(HLXTO_RS << 8) | \
(SLXTO_RS << 4) | \
(NIC_RS << 0) \
)
#define IRR1 (0x0c)
#define IRR1_SETTING_RTL838X ((GPIO_ABCD_RS << 28) | \
(GPIO_EFGH_RS << 24) | \
(RTC_RS << 20) | \
(SWCORE_RS << 16) \
)
#define IRR1_SETTING_RTL839X ((GPIO_ABCD_RS << 28) | \
(SWCORE_RS << 16) \
)
#define IRR2 (0x10)
#define IRR2_SETTING 0
#define IRR3 (0x14)
#define IRR3_SETTING 0
/* Interrupt Routing Selection */
#define UART0_RS 2
#define UART1_RS 1
#define TC0_RS 5
#define TC1_RS 1
#define OCPTO_RS 1
#define HLXTO_RS 1
#define SLXTO_RS 1
#define NIC_RS 4
#define GPIO_ABCD_RS 4
#define GPIO_EFGH_RS 4
#define RTC_RS 4
#define SWCORE_RS 3
#define WDT_IP1_RS 4
#define WDT_IP2_RS 5
/* Interrupt IRQ Assignments */
#define UART0_IRQ 31
#define UART1_IRQ 30
#define TC0_IRQ 29
#define TC1_IRQ 28
#define OCPTO_IRQ 27
#define HLXTO_IRQ 26
#define SLXTO_IRQ 25
#define NIC_IRQ 24
#define GPIO_ABCD_IRQ 23
#define GPIO_EFGH_IRQ 22
#define RTC_IRQ 21
#define SWCORE_IRQ 20
#define WDT_IP1_IRQ 19
#define WDT_IP2_IRQ 18
#define SYSTEM_FREQ 200000000
#define RTL838X_UART0_BASE ((volatile void *)(0xb8002000UL))
#define RTL838X_UART0_BAUD 38400 /* ex. 19200 or 38400 or 57600 or 115200 */
#define RTL838X_UART0_FREQ (SYSTEM_FREQ - RTL838X_UART0_BAUD * 24)
#define RTL838X_UART0_MAPBASE 0x18002000UL
#define RTL838X_UART0_MAPSIZE 0x100
#define RTL838X_UART0_IRQ UART0_IRQ
#define RTL838X_UART1_BASE ((volatile void *)(0xb8002100UL))
#define RTL838X_UART1_BAUD 38400 /* ex. 19200 or 38400 or 57600 or 115200 */
#define RTL838X_UART1_FREQ (SYSTEM_FREQ - RTL838X_UART1_BAUD * 24)
#define RTL838X_UART1_MAPBASE 0x18002100UL
#define RTL838X_UART1_MAPSIZE 0x100
#define RTL838X_UART1_IRQ UART1_IRQ
#define UART0_RBR (RTL838X_UART0_BASE + 0x000)
#define UART0_THR (RTL838X_UART0_BASE + 0x000)
#define UART0_DLL (RTL838X_UART0_BASE + 0x000)
#define UART0_IER (RTL838X_UART0_BASE + 0x004)
#define UART0_DLM (RTL838X_UART0_BASE + 0x004)
#define UART0_IIR (RTL838X_UART0_BASE + 0x008)
#define UART0_FCR (RTL838X_UART0_BASE + 0x008)
#define UART0_LCR (RTL838X_UART0_BASE + 0x00C)
#define UART0_MCR (RTL838X_UART0_BASE + 0x010)
#define UART0_LSR (RTL838X_UART0_BASE + 0x014)
#define UART1_RBR (RTL838X_UART1_BASE + 0x000)
#define UART1_THR (RTL838X_UART1_BASE + 0x000)
#define UART1_DLL (RTL838X_UART1_BASE + 0x000)
#define UART1_IER (RTL838X_UART1_BASE + 0x004)
#define UART1_DLM (RTL838X_UART1_BASE + 0x004)
#define UART1_IIR (RTL838X_UART1_BASE + 0x008)
#define UART1_FCR (RTL838X_UART1_BASE + 0x008)
#define FCR_EN 0x01
#define FCR_RXRST 0x02
#define XRST 0x02
#define FCR_TXRST 0x04
#define TXRST 0x04
#define FCR_DMA 0x08
#define FCR_RTRG 0xC0
#define CHAR_TRIGGER_01 0x00
#define CHAR_TRIGGER_04 0x40
#define CHAR_TRIGGER_08 0x80
#define CHAR_TRIGGER_14 0xC0
#define UART1_LCR (RTL838X_UART1_BASE + 0x00C)
#define LCR_WLN 0x03
#define CHAR_LEN_5 0x00
#define CHAR_LEN_6 0x01
#define CHAR_LEN_7 0x02
#define CHAR_LEN_8 0x03
#define LCR_STB 0x04
#define ONE_STOP 0x00
#define TWO_STOP 0x04
#define LCR_PEN 0x08
#define PARITY_ENABLE 0x01
#define PARITY_DISABLE 0x00
#define LCR_EPS 0x30
#define PARITY_ODD 0x00
#define PARITY_EVEN 0x10
#define PARITY_MARK 0x20
#define PARITY_SPACE 0x30
#define LCR_BRK 0x40
#define LCR_DLAB 0x80
#define DLAB 0x80
#define UART1_MCR (RTL838X_UART1_BASE + 0x010)
#define UART1_LSR (RTL838X_UART1_BASE + 0x014)
#define LSR_DR 0x01
#define RxCHAR_AVAIL 0x01
#define LSR_OE 0x02
#define LSR_PE 0x04
#define LSR_FE 0x08
#define LSR_BI 0x10
#define LSR_THRE 0x20
#define TxCHAR_AVAIL 0x00
#define TxCHAR_EMPTY 0x20
#define LSR_TEMT 0x40
#define LSR_RFE 0x80
/*
* Timer/counter for 8390/80/28 TC & MP chip
*/
#define RTL838X_TIMER0_BASE ((volatile void *)(0xb8003100UL))
#define RTL838X_TIMER0_IRQ RTL838X_TC0_EXT_IRQ
#define RTL8390TC_TC1DATA (RTL838X_TIMER0_BASE + 0x04)
#define RTL8390TC_TCD_OFFSET 8
#define RTL8390TC_TC0CNT (RTL838X_TIMER0_BASE + 0x08)
#define RTL8390TC_TC1CNT (RTL838X_TIMER0_BASE + 0x0C)
#define RTL8390TC_TCCNR (RTL838X_TIMER0_BASE + 0x10)
#define RTL8390TC_TC0EN (1 << 31)
#define RTL8390TC_TC0MODE_TIMER (1 << 30)
#define RTL8390TC_TC1EN (1 << 29)
#define RTL8390TC_TC1MODE_TIMER (1 << 28)
#define RTL8390TC_TCIR (RTL838X_TIMER0_BASE + 0x14)
#define RTL8390TC_TC0IE (1 << 31)
#define RTL8390TC_TC1IE (1 << 30)
#define RTL8390TC_TC0IP (1 << 29)
#define RTL8390TC_TC1IP (1 << 28)
#define RTL8390TC_CDBR (RTL838X_TIMER0_BASE + 0x18)
#define RTL8390TC_DIVF_OFFSET 16
#define RTL8390TC_WDTCNR (RTL838X_TIMER0_BASE + 0x1C)
#define RTL8390MP_TC1DATA (RTL838X_TIMER0_BASE + 0x10)
#define RTL8390MP_TC0CNT (RTL838X_TIMER0_BASE + 0x04)
#define RTL8390MP_TC1CNT (RTL838X_TIMER0_BASE + 0x14)
#define RTL8390MP_TC0CTL (RTL838X_TIMER0_BASE + 0x08)
#define RTL8390MP_TC1CTL (RTL838X_TIMER0_BASE + 0x18)
#define RTL8390MP_TCEN (1 << 28)
#define RTL8390MP_TCMODE_TIMER (1 << 24)
#define RTL8390MP_TCDIV_FACTOR (0xFFFF << 0)
#define RTL8390MP_TC0INT (RTL838X_TIMER0_BASE + 0xC)
#define RTL8390MP_TC1INT (RTL838X_TIMER0_BASE + 0x1C)
#define RTL8390MP_TCIE (1 << 20)
#define RTL8390MP_TCIP (1 << 16)
#define RTL8390MP_WDTCNR (RTL838X_TIMER0_BASE + 0x50)
#define RTL8380MP_TC0DATA (RTL838X_TIMER0_BASE + 0x00)
#define RTL8380MP_TC1DATA (RTL838X_TIMER0_BASE + 0x10)
#define RTL8380MP_TC0CNT (RTL838X_TIMER0_BASE + 0x04)
#define RTL8380MP_TC1CNT (RTL838X_TIMER0_BASE + 0x14)
#define RTL8380MP_TC0CTL (RTL838X_TIMER0_BASE + 0x08)
#define RTL8380MP_TC1CTL (RTL838X_TIMER0_BASE + 0x18)
#define RTL8380MP_TCEN (1 << 28)
#define RTL8380MP_TCMODE_TIMER (1 << 24)
#define RTL8380MP_TCDIV_FACTOR (0xFFFF << 0)
#define RTL8380MP_TC0INT (RTL838X_TIMER0_BASE + 0xC)
#define RTL8380MP_TC1INT (RTL838X_TIMER0_BASE + 0x1C)
#define RTL8380MP_TCIE (1 << 20)
#define RTL8380MP_TCIP (1 << 16)
#define RTL8380MP_WDTCNR (RTL838X_TIMER0_BASE + 0x50)
#define DIVISOR_RTL8390 55
#define DIVISOR_RTL8380 2500
#define DIVISOR_MAX 16834
/*
* Memory Controller
*/
#define MC_MCR 0xB8001000
#define MC_MCR_VAL 0x00000000
#define MC_DCR 0xB8001004
#define MC_DCR0_VAL 0x54480000
#define MC_DTCR 0xB8001008
#define MC_DTCR_VAL 0xFFFF05C0
/*
* GPIO
*/
#define GPIO_CTRL_REG_BASE ((volatile void *) 0xb8003500)
#define RTL838X_GPIO_PABC_CNR (GPIO_CTRL_REG_BASE + 0x0)
#define RTL838X_GPIO_PABC_TYPE (GPIO_CTRL_REG_BASE + 0x04)
#define RTL838X_GPIO_PABC_DIR (GPIO_CTRL_REG_BASE + 0x8)
#define RTL838X_GPIO_PABC_DATA (GPIO_CTRL_REG_BASE + 0xc)
#define RTL838X_GPIO_PABC_ISR (GPIO_CTRL_REG_BASE + 0x10)
#define RTL838X_GPIO_PAB_IMR (GPIO_CTRL_REG_BASE + 0x14)
#define RTL838X_GPIO_PC_IMR (GPIO_CTRL_REG_BASE + 0x18)
#define RTL838X_MODEL_NAME_INFO (0x00D4)
#define RTL839X_MODEL_NAME_INFO (0x0FF0)
#define RTL838X_LED_GLB_CTRL (0xA000)
#define RTL839X_LED_GLB_CTRL (0x00E4)
#define RTL838X_EXT_GPIO_DIR (0xA08C)
#define RTL839X_EXT_GPIO_DIR (0x0214)
#define RTL838X_EXT_GPIO_DATA (0xA094)
#define RTL839X_EXT_GPIO_DATA (0x021c)
#define RTL838X_EXT_GPIO_INDRT_ACCESS (0xA09C)
#define RTL839X_EXT_GPIO_INDRT_ACCESS (0x0224)
#define RTL838X_EXTRA_GPIO_CTRL (0xA0E0)
#define RTL838X_DMY_REG5 (0x0144)
#define RTL838X_EXTRA_GPIO_CTRL (0xA0E0)
#define RTL838X_GMII_INTF_SEL (0x1000)
#define RTL838X_IO_DRIVING_ABILITY_CTRL (0x1010)
#define RTL838X_GPIO_A7 31
#define RTL838X_GPIO_A6 30
#define RTL838X_GPIO_A5 29
#define RTL838X_GPIO_A4 28
#define RTL838X_GPIO_A3 27
#define RTL838X_GPIO_A2 26
#define RTL838X_GPIO_A1 25
#define RTL838X_GPIO_A0 24
#define RTL838X_GPIO_B7 23
#define RTL838X_GPIO_B6 22
#define RTL838X_GPIO_B5 21
#define RTL838X_GPIO_B4 20
#define RTL838X_GPIO_B3 19
#define RTL838X_GPIO_B2 18
#define RTL838X_GPIO_B1 17
#define RTL838X_GPIO_B0 16
#define RTL838X_GPIO_C7 15
#define RTL838X_GPIO_C6 14
#define RTL838X_GPIO_C5 13
#define RTL838X_GPIO_C4 12
#define RTL838X_GPIO_C3 11
#define RTL838X_GPIO_C2 10
#define RTL838X_GPIO_C1 9
#define RTL838X_GPIO_C0 8
#define RTL838X_INT_RW_CTRL (0x0058)
#define RTL838X_EXT_VERSION (0x00D0)
#define RTL838X_PLL_CML_CTRL (0x0FF8)
#define RTL838X_STRAP_DBG (0x100C)
/*
* Reset
*/
#define RGCR (0x1E70)
#define RTL839X_RST_GLB_CTRL (0x0014)
#define RTL838X_RST_GLB_CTRL_1 (0x0040)
/* LED control by switch */
#define RTL838X_LED_MODE_SEL (0x1004)
#define RTL838X_LED_MODE_CTRL (0xA004)
#define RTL838X_LED_P_EN_CTRL (0xA008)
/* LED control by software */
#define RTL838X_LED_SW_CTRL (0x0128)
#define RTL839X_LED_SW_CTRL (0xA00C)
#define RTL838X_LED_SW_P_EN_CTRL (0xA010)
#define RTL839X_LED_SW_P_EN_CTRL (0x012C)
#define RTL838X_LED0_SW_P_EN_CTRL (0xA010)
#define RTL839X_LED0_SW_P_EN_CTRL (0x012C)
#define RTL838X_LED1_SW_P_EN_CTRL (0xA014)
#define RTL839X_LED1_SW_P_EN_CTRL (0x0130)
#define RTL838X_LED2_SW_P_EN_CTRL (0xA018)
#define RTL839X_LED2_SW_P_EN_CTRL (0x0134)
#define RTL838X_LED_SW_P_CTRL (0xA01C)
#define RTL839X_LED_SW_P_CTRL (0x0144)
#define RTL839X_MAC_EFUSE_CTRL (0x02ac)
/*
* MDIO via Realtek's SMI interface
*/
#define RTL838X_SMI_GLB_CTRL (0xa100)
#define RTL838X_SMI_ACCESS_PHY_CTRL_0 (0xa1b8)
#define RTL838X_SMI_ACCESS_PHY_CTRL_1 (0xa1bc)
#define RTL838X_SMI_ACCESS_PHY_CTRL_2 (0xa1c0)
#define RTL838X_SMI_ACCESS_PHY_CTRL_3 (0xa1c4)
#define RTL838X_SMI_PORT0_5_ADDR_CTRL (0xa1c8)
#define RTL838X_SMI_POLL_CTRL (0xa17c)
#define RTL839X_SMI_GLB_CTRL (0x03f8)
#define RTL839X_SMI_PORT_POLLING_CTRL (0x03fc)
#define RTL839X_PHYREG_ACCESS_CTRL (0x03DC)
#define RTL839X_PHYREG_CTRL (0x03E0)
#define RTL839X_PHYREG_PORT_CTRL(p) (0x03E4 + ((p >> 5) << 2))
#define RTL839X_PHYREG_DATA_CTRL (0x03F0)
/*
* Switch interrupts
*/
#define RTL838X_IMR_GLB (0x1100)
#define RTL838X_IMR_PORT_LINK_STS_CHG (0x1104)
#define RTL838X_ISR_GLB_SRC (0x1148)
#define RTL838X_ISR_PORT_LINK_STS_CHG (0x114C)
#define RTL839X_IMR_GLB (0x0064)
#define RTL839X_IMR_PORT_LINK_STS_CHG (0x0068)
#define RTL839X_ISR_GLB_SRC (0x009c)
#define RTL839X_ISR_PORT_LINK_STS_CHG (0x00a0)
/* Definition of family IDs */
#define RTL8389_FAMILY_ID (0x8389)
#define RTL8328_FAMILY_ID (0x8328)
#define RTL8390_FAMILY_ID (0x8390)
#define RTL8350_FAMILY_ID (0x8350)
#define RTL8380_FAMILY_ID (0x8380)
#define RTL8330_FAMILY_ID (0x8330)
struct rtl83xx_soc_info {
unsigned char *name;
unsigned int id;
unsigned int family;
unsigned char *compatible;
volatile void *sw_base;
volatile void *icu_base;
};
/* rtl83xx-related functions used across subsystems */
int rtl838x_smi_wait_op(int timeout);
int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val);
int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val);
int rtl839x_read_phy(u32 port, u32 page, u32 reg, u32 *val);
int rtl839x_write_phy(u32 port, u32 page, u32 reg, u32 val);
#endif /* _MACH_RTL838X_H_ */

View File

@@ -0,0 +1,5 @@
#
# Makefile for the rtl838x specific parts of the kernel
#
obj-y := setup.o prom.o irq.o

View File

@@ -0,0 +1,6 @@
#
# Realtek RTL838x SoCs
#
platform-$(CONFIG_RTL838X) += rtl838x/
cflags-$(CONFIG_RTL838X) += -I$(srctree)/arch/mips/include/asm/mach-rtl838x/
load-$(CONFIG_RTL838X) += 0xffffffff80000000

View File

@@ -0,0 +1,167 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Realtek RTL83XX architecture specific IRQ handling
*
* based on the original BSP
* Copyright (C) 2006-2012 Tony Wu (tonywu@realtek.com)
* Copyright (C) 2020 B. Koblitz
* Copyright (C) 2020 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2020 John Crispin <john@phrozen.org>
*/
#include <linux/irqchip.h>
#include <linux/spinlock.h>
#include <linux/of_address.h>
#include <asm/irq_cpu.h>
#include <linux/of_irq.h>
#include <asm/cevt-r4k.h>
#include <mach-rtl83xx.h>
#include "irq.h"
#define REALTEK_CPU_IRQ_SHARED0 (MIPS_CPU_IRQ_BASE + 2)
#define REALTEK_CPU_IRQ_UART (MIPS_CPU_IRQ_BASE + 3)
#define REALTEK_CPU_IRQ_SWITCH (MIPS_CPU_IRQ_BASE + 4)
#define REALTEK_CPU_IRQ_SHARED1 (MIPS_CPU_IRQ_BASE + 5)
#define REALTEK_CPU_IRQ_EXTERNAL (MIPS_CPU_IRQ_BASE + 6)
#define REALTEK_CPU_IRQ_COUNTER (MIPS_CPU_IRQ_BASE + 7)
#define REG(x) (rtl83xx_ictl_base + x)
extern struct rtl83xx_soc_info soc_info;
static DEFINE_RAW_SPINLOCK(irq_lock);
static void __iomem *rtl83xx_ictl_base;
static void rtl83xx_ictl_enable_irq(struct irq_data *i)
{
unsigned long flags;
u32 value;
raw_spin_lock_irqsave(&irq_lock, flags);
value = rtl83xx_r32(REG(RTL83XX_ICTL_GIMR));
value |= BIT(i->hwirq);
rtl83xx_w32(value, REG(RTL83XX_ICTL_GIMR));
raw_spin_unlock_irqrestore(&irq_lock, flags);
}
static void rtl83xx_ictl_disable_irq(struct irq_data *i)
{
unsigned long flags;
u32 value;
raw_spin_lock_irqsave(&irq_lock, flags);
value = rtl83xx_r32(REG(RTL83XX_ICTL_GIMR));
value &= ~BIT(i->hwirq);
rtl83xx_w32(value, REG(RTL83XX_ICTL_GIMR));
raw_spin_unlock_irqrestore(&irq_lock, flags);
}
static struct irq_chip rtl83xx_ictl_irq = {
.name = "RTL83xx",
.irq_enable = rtl83xx_ictl_enable_irq,
.irq_disable = rtl83xx_ictl_disable_irq,
.irq_ack = rtl83xx_ictl_disable_irq,
.irq_mask = rtl83xx_ictl_disable_irq,
.irq_unmask = rtl83xx_ictl_enable_irq,
.irq_eoi = rtl83xx_ictl_enable_irq,
};
static int intc_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw)
{
irq_set_chip_and_handler(hw, &rtl83xx_ictl_irq, handle_level_irq);
return 0;
}
static const struct irq_domain_ops irq_domain_ops = {
.map = intc_map,
.xlate = irq_domain_xlate_onecell,
};
static void rtl838x_irq_dispatch(struct irq_desc *desc)
{
unsigned int pending = rtl83xx_r32(REG(RTL83XX_ICTL_GIMR)) & rtl83xx_r32(REG(RTL83XX_ICTL_GISR));
if (pending) {
struct irq_domain *domain = irq_desc_get_handler_data(desc);
generic_handle_irq(irq_find_mapping(domain, __ffs(pending)));
} else {
spurious_interrupt();
}
}
asmlinkage void plat_irq_dispatch(void)
{
unsigned int pending;
pending = read_c0_cause() & read_c0_status() & ST0_IM;
if (pending & CAUSEF_IP7)
do_IRQ(REALTEK_CPU_IRQ_COUNTER);
else if (pending & CAUSEF_IP6)
do_IRQ(REALTEK_CPU_IRQ_EXTERNAL);
else if (pending & CAUSEF_IP5)
do_IRQ(REALTEK_CPU_IRQ_SHARED1);
else if (pending & CAUSEF_IP4)
do_IRQ(REALTEK_CPU_IRQ_SWITCH);
else if (pending & CAUSEF_IP3)
do_IRQ(REALTEK_CPU_IRQ_UART);
else if (pending & CAUSEF_IP2)
do_IRQ(REALTEK_CPU_IRQ_SHARED0);
else
spurious_interrupt();
}
static void __init icu_of_init(struct device_node *node, struct device_node *parent)
{
struct irq_domain *domain;
domain = irq_domain_add_simple(node, 32, 0,
&irq_domain_ops, NULL);
irq_set_chained_handler_and_data(2, rtl838x_irq_dispatch, domain);
irq_set_chained_handler_and_data(5, rtl838x_irq_dispatch, domain);
rtl83xx_ictl_base = of_iomap(node, 0);
if (!rtl83xx_ictl_base)
return;
/* Disable all cascaded interrupts */
rtl83xx_w32(0, REG(RTL83XX_ICTL_GIMR));
/* Set up interrupt routing */
rtl83xx_w32(RTL83XX_IRR0_SETTING, REG(RTL83XX_IRR0));
rtl83xx_w32(RTL83XX_IRR1_SETTING, REG(RTL83XX_IRR1));
rtl83xx_w32(RTL83XX_IRR2_SETTING, REG(RTL83XX_IRR2));
rtl83xx_w32(RTL83XX_IRR3_SETTING, REG(RTL83XX_IRR3));
/* Clear timer interrupt */
write_c0_compare(0);
/* Enable all CPU interrupts */
write_c0_status(read_c0_status() | ST0_IM);
/* Enable timer0 and uart0 interrupts */
rtl83xx_w32(BIT(RTL83XX_IRQ_TC0) | BIT(RTL83XX_IRQ_UART0), REG(RTL83XX_ICTL_GIMR));
}
static struct of_device_id __initdata of_irq_ids[] = {
{ .compatible = "mti,cpu-interrupt-controller", .data = mips_cpu_irq_of_init },
{ .compatible = "realtek,rt8380-intc", .data = icu_of_init },
{},
};
void __init arch_init_irq(void)
{
of_irq_init(of_irq_ids);
}

View File

@@ -0,0 +1,124 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* prom.c
* Early intialization code for the Realtek RTL838X SoC
*
* based on the original BSP by
* Copyright (C) 2006-2012 Tony Wu (tonywu@realtek.com)
* Copyright (C) 2020 B. Koblitz
*
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
#include <asm/bootinfo.h>
#include <asm/addrspace.h>
#include <asm/page.h>
#include <asm/cpu.h>
#include <mach-rtl83xx.h>
extern char arcs_cmdline[];
extern const char __appended_dtb;
struct rtl83xx_soc_info soc_info;
const void *fdt;
const char *get_system_type(void)
{
return soc_info.name;
}
void __init prom_free_prom_memory(void)
{
}
void __init device_tree_init(void)
{
if (!fdt_check_header(&__appended_dtb)) {
fdt = &__appended_dtb;
pr_info("Using appended Device Tree.\n");
}
initial_boot_params = (void *)fdt;
unflatten_and_copy_device_tree();
}
static void __init prom_init_cmdline(void)
{
int argc = fw_arg0;
char **argv = (char **) KSEG1ADDR(fw_arg1);
int i;
arcs_cmdline[0] = '\0';
for (i = 0; i < argc; i++) {
char *p = (char *) KSEG1ADDR(argv[i]);
if (CPHYSADDR(p) && *p) {
strlcat(arcs_cmdline, p, sizeof(arcs_cmdline));
strlcat(arcs_cmdline, " ", sizeof(arcs_cmdline));
}
}
pr_info("Kernel command line: %s\n", arcs_cmdline);
}
void __init prom_init(void)
{
uint32_t model;
/* uart0 */
setup_8250_early_printk_port(0xb8002000, 2, 0);
soc_info.sw_base = RTL838X_SW_BASE;
model = sw_r32(RTL838X_MODEL_NAME_INFO) >> 16;
if (model != 0x8328 && model != 0x8330 && model != 0x8332 &&
model != 0x8380 && model != 0x8382)
model = sw_r32(RTL839X_MODEL_NAME_INFO) >> 16;
soc_info.id = model;
switch (model) {
case 0x8328:
soc_info.name = "RTL8328";
soc_info.family = RTL8328_FAMILY_ID;
break;
case 0x8332:
soc_info.name = "RTL8332";
soc_info.family = RTL8380_FAMILY_ID;
break;
case 0x8380:
soc_info.name = "RTL8380";
soc_info.family = RTL8380_FAMILY_ID;
break;
case 0x8382:
soc_info.name = "RTL8382";
soc_info.family = RTL8380_FAMILY_ID;
break;
case 0x8390:
soc_info.name = "RTL8390";
soc_info.family = RTL8390_FAMILY_ID;
break;
case 0x8391:
soc_info.name = "RTL8391";
soc_info.family = RTL8390_FAMILY_ID;
break;
case 0x8392:
soc_info.name = "RTL8392";
soc_info.family = RTL8390_FAMILY_ID;
break;
case 0x8393:
soc_info.name = "RTL8393";
soc_info.family = RTL8390_FAMILY_ID;
break;
default:
soc_info.name = "DEFAULT";
soc_info.family = 0;
}
pr_info("SoC Type: %s\n", get_system_type());
prom_init_cmdline();
}

View File

@@ -0,0 +1,109 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Setup for the Realtek RTL838X SoC:
* Memory, Timer and Serial
*
* Copyright (C) 2020 B. Koblitz
* based on the original BSP by
* Copyright (C) 2006-2012 Tony Wu (tonywu@realtek.com)
*
*/
#include <linux/console.h>
#include <linux/init.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <asm/addrspace.h>
#include <asm/io.h>
#include <asm/bootinfo.h>
#include <linux/of_fdt.h>
#include <asm/reboot.h>
#include <asm/time.h> /* for mips_hpt_frequency */
#include <asm/prom.h>
#include <asm/smp-ops.h>
#include "mach-rtl83xx.h"
extern int rtl838x_serial_init(void);
extern struct rtl83xx_soc_info soc_info;
u32 pll_reset_value;
static void rtl838x_restart(char *command)
{
u32 pll = sw_r32(RTL838X_PLL_CML_CTRL);
/* SoC reset vector (in flash memory): on RTL839x platform preferred way to reset */
void (*f)(void) = (void *) 0xbfc00000;
pr_info("System restart.\n");
if (soc_info.family == RTL8390_FAMILY_ID) {
f();
/* If calling reset vector fails, reset entire chip */
sw_w32(0xFFFFFFFF, RTL839X_RST_GLB_CTRL);
/* If this fails, halt the CPU */
while
(1);
}
pr_info("PLL control register: %x, applying reset value %x\n",
pll, pll_reset_value);
sw_w32(3, RTL838X_INT_RW_CTRL);
sw_w32(pll_reset_value, RTL838X_PLL_CML_CTRL);
sw_w32(0, RTL838X_INT_RW_CTRL);
pr_info("Resetting RTL838X SoC\n");
/* Reset Global Control1 Register */
sw_w32(1, RTL838X_RST_GLB_CTRL_1);
}
static void rtl838x_halt(void)
{
pr_info("System halted.\n");
while(1);
}
void __init plat_mem_setup(void)
{
void *dtb;
set_io_port_base(KSEG1);
_machine_restart = rtl838x_restart;
_machine_halt = rtl838x_halt;
if (fw_passed_dtb) /* UHI interface */
dtb = (void *)fw_passed_dtb;
else if (__dtb_start != __dtb_end)
dtb = (void *)__dtb_start;
else
panic("no dtb found");
/*
* Load the devicetree. This causes the chosen node to be
* parsed resulting in our memory appearing
*/
__dt_setup_arch(dtb);
}
void __init plat_time_init(void)
{
struct device_node *np;
u32 freq = 500000000;
np = of_find_node_by_name(NULL, "cpus");
if (!np) {
pr_err("Missing 'cpus' DT node, using default frequency.");
} else {
if (of_property_read_u32(np, "frequency", &freq) < 0)
pr_err("No 'frequency' property in DT, using default.");
else
pr_info("CPU frequency from device tree: %d", freq);
of_node_put(np);
}
mips_hpt_frequency = freq / 2;
pll_reset_value = sw_r32(RTL838X_PLL_CML_CTRL);
}

View File

@@ -0,0 +1,321 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/gpio/driver.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <asm/mach-rtl838x/mach-rtl83xx.h>
/* RTL8231 registers for LED control */
#define RTL8231_LED_FUNC0 0x0000
#define RTL8231_GPIO_PIN_SEL(gpio) ((0x0002) + ((gpio) >> 4))
#define RTL8231_GPIO_DIR(gpio) ((0x0005) + ((gpio) >> 4))
#define RTL8231_GPIO_DATA(gpio) ((0x001C) + ((gpio) >> 4))
struct rtl8231_gpios {
struct gpio_chip gc;
struct device *dev;
u32 id;
int smi_bus_id;
u16 reg_shadow[0x20];
u32 reg_cached;
int ext_gpio_indrt_access;
};
extern struct mutex smi_lock;
extern struct rtl83xx_soc_info soc_info;
static u32 rtl8231_read(struct rtl8231_gpios *gpios, u32 reg)
{
u32 t = 0;
u8 bus_id = gpios->smi_bus_id;
reg &= 0x1f;
bus_id &= 0x1f;
/* Calculate read register address */
t = (bus_id << 2) | (reg << 7);
/* Set execution bit: cleared when operation completed */
t |= 1;
sw_w32(t, gpios->ext_gpio_indrt_access);
do { /* TODO: Return 0x80000000 if timeout */
t = sw_r32(gpios->ext_gpio_indrt_access);
} while (t & 1);
pr_debug("%s: %x, %x, %x\n", __func__, bus_id, reg, (t & 0xffff0000) >> 16);
return (t & 0xffff0000) >> 16;
}
static int rtl8231_write(struct rtl8231_gpios *gpios, u32 reg, u32 data)
{
u32 t = 0;
u8 bus_id = gpios->smi_bus_id;
pr_debug("%s: %x, %x, %x\n", __func__, bus_id, reg, data);
reg &= 0x1f;
bus_id &= 0x1f;
t = (bus_id << 2) | (reg << 7) | (data << 16);
/* Set write bit */
t |= 2;
/* Set execution bit: cleared when operation completed */
t |= 1;
sw_w32(t, gpios->ext_gpio_indrt_access);
do { /* TODO: Return -1 if timeout */
t = sw_r32(gpios->ext_gpio_indrt_access);
} while (t & 1);
return 0;
}
static u32 rtl8231_read_cached(struct rtl8231_gpios *gpios, u32 reg)
{
if (reg > 0x1f)
return 0;
if (gpios->reg_cached & (1 << reg))
return gpios->reg_shadow[reg];
return rtl8231_read(gpios, reg);
}
/* Set Direction of the RTL8231 pin:
* dir 1: input
* dir 0: output
*/
static int rtl8231_pin_dir(struct rtl8231_gpios *gpios, u32 gpio, u32 dir)
{
u32 v;
int pin_sel_addr = RTL8231_GPIO_PIN_SEL(gpio);
int pin_dir_addr = RTL8231_GPIO_DIR(gpio);
int pin = gpio % 16;
int dpin = pin;
if (gpio > 31) {
pr_info("WARNING: HIGH pin\n");
dpin = pin << 5;
pin_dir_addr = pin_sel_addr;
}
v = rtl8231_read_cached(gpios, pin_dir_addr);
if (v & 0x80000000) {
pr_err("Error reading RTL8231\n");
return -1;
}
v = (v & ~(1 << dpin)) | (dir << dpin);
rtl8231_write(gpios, pin_dir_addr, v);
gpios->reg_shadow[pin_dir_addr] = v;
gpios->reg_cached |= 1 << pin_dir_addr;
return 0;
}
static int rtl8231_pin_dir_get(struct rtl8231_gpios *gpios, u32 gpio, u32 *dir)
{
/* dir 1: input
* dir 0: output
*/
u32 v;
int pin_dir_addr = RTL8231_GPIO_DIR(gpio);
int pin = gpio % 16;
if (gpio > 31) {
pin_dir_addr = RTL8231_GPIO_PIN_SEL(gpio);
pin = pin << 5;
}
v = rtl8231_read(gpios, pin_dir_addr);
if (v & (1 << pin))
*dir = 1;
else
*dir = 0;
return 0;
}
static int rtl8231_pin_set(struct rtl8231_gpios *gpios, u32 gpio, u32 data)
{
u32 v = rtl8231_read(gpios, RTL8231_GPIO_DATA(gpio));
pr_debug("%s: %d to %d\n", __func__, gpio, data);
if (v & 0x80000000) {
pr_err("Error reading RTL8231\n");
return -1;
}
v = (v & ~(1 << (gpio % 16))) | (data << (gpio % 16));
rtl8231_write(gpios, RTL8231_GPIO_DATA(gpio), v);
gpios->reg_shadow[RTL8231_GPIO_DATA(gpio)] = v;
gpios->reg_cached |= 1 << RTL8231_GPIO_DATA(gpio);
return 0;
}
static int rtl8231_pin_get(struct rtl8231_gpios *gpios, u32 gpio, u16 *state)
{
u32 v = rtl8231_read(gpios, RTL8231_GPIO_DATA(gpio));
if (v & 0x80000000) {
pr_err("Error reading RTL8231\n");
return -1;
}
*state = v & 0xffff;
return 0;
}
static int rtl8231_direction_input(struct gpio_chip *gc, unsigned int offset)
{
int err;
struct rtl8231_gpios *gpios = gpiochip_get_data(gc);
pr_debug("%s: %d\n", __func__, offset);
mutex_lock(&smi_lock);
err = rtl8231_pin_dir(gpios, offset, 1);
mutex_unlock(&smi_lock);
return err;
}
static int rtl8231_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
{
int err;
struct rtl8231_gpios *gpios = gpiochip_get_data(gc);
pr_debug("%s: %d\n", __func__, offset);
mutex_lock(&smi_lock);
err = rtl8231_pin_dir(gpios, offset, 0);
mutex_unlock(&smi_lock);
if (!err)
err = rtl8231_pin_set(gpios, offset, value);
return err;
}
static int rtl8231_get_direction(struct gpio_chip *gc, unsigned int offset)
{
u32 v = 0;
struct rtl8231_gpios *gpios = gpiochip_get_data(gc);
pr_debug("%s: %d\n", __func__, offset);
mutex_lock(&smi_lock);
rtl8231_pin_dir_get(gpios, offset, &v);
mutex_unlock(&smi_lock);
return v;
}
static int rtl8231_gpio_get(struct gpio_chip *gc, unsigned int offset)
{
u16 state = 0;
struct rtl8231_gpios *gpios = gpiochip_get_data(gc);
mutex_lock(&smi_lock);
rtl8231_pin_get(gpios, offset, &state);
mutex_unlock(&smi_lock);
if (state & (1 << (offset % 16)))
return 1;
return 0;
}
void rtl8231_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
{
struct rtl8231_gpios *gpios = gpiochip_get_data(gc);
rtl8231_pin_set(gpios, offset, value);
}
int rtl8231_init(struct rtl8231_gpios *gpios)
{
pr_info("%s called, MDIO bus ID: %d\n", __func__, gpios->smi_bus_id);
if (soc_info.family == RTL8390_FAMILY_ID) {
sw_w32_mask(0x7 << 18, 0x4 << 18, RTL839X_LED_GLB_CTRL);
return 0;
}
/* Enable RTL8231 indirect access mode */
sw_w32_mask(0, 1, RTL838X_EXTRA_GPIO_CTRL);
sw_w32_mask(3, 1, RTL838X_DMY_REG5);
/* Enable RTL8231 via GPIO_A1 line
rtl838x_w32_mask(0, 1 << RTL838X_GPIO_A1, RTL838X_GPIO_PABC_DIR);
rtl838x_w32_mask(0, 1 << RTL838X_GPIO_A1, RTL838X_GPIO_PABC_DATA); */
mdelay(50); /* wait 50ms for reset */
/*Select GPIO functionality for pins 0-15, 16-31 and 32-37 */
rtl8231_write(gpios, RTL8231_GPIO_PIN_SEL(0), 0xffff);
rtl8231_write(gpios, RTL8231_GPIO_PIN_SEL(16), 0xffff);
gpios->reg_cached = 0;
return 0;
}
static const struct of_device_id rtl8231_gpio_of_match[] = {
{ .compatible = "realtek,rtl8231-gpio" },
{},
};
MODULE_DEVICE_TABLE(of, rtl8231_gpio_of_match);
static int rtl8231_gpio_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct rtl8231_gpios *gpios;
int err;
u8 indirect_bus_id;
pr_info("Probing RTL8231 GPIOs\n");
if (!np) {
dev_err(&pdev->dev, "No DT found\n");
return -EINVAL;
}
gpios = devm_kzalloc(dev, sizeof(*gpios), GFP_KERNEL);
if (!gpios)
return -ENOMEM;
gpios->id = soc_info.id;
if (soc_info.family == RTL8380_FAMILY_ID) {
gpios->ext_gpio_indrt_access = RTL838X_EXT_GPIO_INDRT_ACCESS;
}
if (soc_info.family == RTL8390_FAMILY_ID) {
gpios->ext_gpio_indrt_access = RTL839X_EXT_GPIO_INDRT_ACCESS;
}
if (!of_property_read_u8(np, "indirect-access-bus-id", &indirect_bus_id)) {
gpios->smi_bus_id = indirect_bus_id;
rtl8231_init(gpios);
}
gpios->dev = dev;
gpios->gc.base = 160;
gpios->gc.ngpio = 36;
gpios->gc.label = "rtl8231";
gpios->gc.parent = dev;
gpios->gc.owner = THIS_MODULE;
gpios->gc.can_sleep = true;
gpios->gc.direction_input = rtl8231_direction_input;
gpios->gc.direction_output = rtl8231_direction_output;
gpios->gc.set = rtl8231_gpio_set;
gpios->gc.get = rtl8231_gpio_get;
gpios->gc.get_direction = rtl8231_get_direction;
err = devm_gpiochip_add_data(dev, &gpios->gc, gpios);
return err;
}
static struct platform_driver rtl8231_gpio_driver = {
.driver = {
.name = "rtl8231-gpio",
.of_match_table = rtl8231_gpio_of_match,
},
.probe = rtl8231_gpio_probe,
};
module_platform_driver(rtl8231_gpio_driver);
MODULE_DESCRIPTION("Realtek RTL8231 GPIO expansion chip support");
MODULE_LICENSE("GPL v2");

View File

@@ -0,0 +1,425 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/gpio/driver.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <asm/mach-rtl838x/mach-rtl83xx.h>
/* RTL8231 registers for LED control */
#define RTL8231_LED_FUNC0 0x0000
#define RTL8231_GPIO_PIN_SEL(gpio) ((0x0002) + ((gpio) >> 4))
#define RTL8231_GPIO_DIR(gpio) ((0x0005) + ((gpio) >> 4))
#define RTL8231_GPIO_DATA(gpio) ((0x001C) + ((gpio) >> 4))
struct rtl838x_gpios {
struct gpio_chip gc;
u32 id;
struct device *dev;
int irq;
int num_leds;
int min_led;
int leds_per_port;
u32 led_mode;
int led_glb_ctrl;
int led_sw_ctrl;
int (*led_sw_p_ctrl)(int port);
int (*led_sw_p_en_ctrl)(int port);
int (*ext_gpio_dir)(int i);
int (*ext_gpio_data)(int i);
};
inline int rtl838x_ext_gpio_dir(int i)
{
return RTL838X_EXT_GPIO_DIR + ((i >>5) << 2);
}
inline int rtl839x_ext_gpio_dir(int i)
{
return RTL839X_EXT_GPIO_DIR + ((i >>5) << 2);
}
inline int rtl838x_ext_gpio_data(int i)
{
return RTL838X_EXT_GPIO_DATA + ((i >>5) << 2);
}
inline int rtl839x_ext_gpio_data(int i)
{
return RTL839X_EXT_GPIO_DATA + ((i >>5) << 2);
}
inline int rtl838x_led_sw_p_ctrl(int p)
{
return RTL838X_LED_SW_P_CTRL + (p << 2);
}
inline int rtl839x_led_sw_p_ctrl(int p)
{
return RTL839X_LED_SW_P_CTRL + (p << 2);
}
inline int rtl838x_led_sw_p_en_ctrl(int p)
{
return RTL838X_LED_SW_P_EN_CTRL + ((p / 10) << 2);
}
inline int rtl839x_led_sw_p_en_ctrl(int p)
{
return RTL839X_LED_SW_P_EN_CTRL + ((p / 10) << 2);
}
extern struct mutex smi_lock;
extern struct rtl83xx_soc_info soc_info;
void rtl838x_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
{
int bit;
struct rtl838x_gpios *gpios = gpiochip_get_data(gc);
pr_debug("rtl838x_set: %d, value: %d\n", offset, value);
/* Internal GPIO of the RTL8380 */
if (offset < 32) {
if (value)
rtl83xx_w32_mask(0, BIT(offset), RTL838X_GPIO_PABC_DATA);
else
rtl83xx_w32_mask(BIT(offset), 0, RTL838X_GPIO_PABC_DATA);
}
/* LED driver for PWR and SYS */
if (offset >= 32 && offset < 64) {
bit = offset - 32;
if (value)
sw_w32_mask(0, BIT(bit), gpios->led_glb_ctrl);
else
sw_w32_mask(BIT(bit), 0, gpios->led_glb_ctrl);
return;
}
bit = (offset - 64) % 32;
/* First Port-LED */
if (offset >= 64 && offset < 96
&& offset >= (64 + gpios->min_led)
&& offset < (64 + gpios->min_led + gpios->num_leds)) {
if (value)
sw_w32_mask(7, 5, gpios->led_sw_p_ctrl(bit));
else
sw_w32_mask(7, 0, gpios->led_sw_p_ctrl(bit));
}
if (offset >= 96 && offset < 128
&& offset >= (96 + gpios->min_led)
&& offset < (96 + gpios->min_led + gpios->num_leds)) {
if (value)
sw_w32_mask(7 << 3, 5 << 3, gpios->led_sw_p_ctrl(bit));
else
sw_w32_mask(7 << 3, 0, gpios->led_sw_p_ctrl(bit));
}
if (offset >= 128 && offset < 160
&& offset >= (128 + gpios->min_led)
&& offset < (128 + gpios->min_led + gpios->num_leds)) {
if (value)
sw_w32_mask(7 << 6, 5 << 6, gpios->led_sw_p_ctrl(bit));
else
sw_w32_mask(7 << 6, 0, gpios->led_sw_p_ctrl(bit));
}
__asm__ volatile ("sync");
}
static int rtl838x_direction_input(struct gpio_chip *gc, unsigned int offset)
{
pr_debug("%s: %d\n", __func__, offset);
if (offset < 32) {
rtl83xx_w32_mask(BIT(offset), 0, RTL838X_GPIO_PABC_DIR);
return 0;
}
/* Internal LED driver does not support input */
return -ENOTSUPP;
}
static int rtl838x_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
{
pr_debug("%s: %d\n", __func__, offset);
if (offset < 32)
rtl83xx_w32_mask(0, BIT(offset), RTL838X_GPIO_PABC_DIR);
rtl838x_gpio_set(gc, offset, value);
/* LED for PWR and SYS driver is direction output by default */
return 0;
}
static int rtl838x_get_direction(struct gpio_chip *gc, unsigned int offset)
{
u32 v = 0;
pr_debug("%s: %d\n", __func__, offset);
if (offset < 32) {
v = rtl83xx_r32(RTL838X_GPIO_PABC_DIR);
if (v & BIT(offset))
return 0;
return 1;
}
/* LED driver for PWR and SYS is direction output by default */
if (offset >= 32 && offset < 64)
return 0;
return 0;
}
static int rtl838x_gpio_get(struct gpio_chip *gc, unsigned int offset)
{
u32 v;
struct rtl838x_gpios *gpios = gpiochip_get_data(gc);
pr_debug("%s: %d\n", __func__, offset);
/* Internal GPIO of the RTL8380 */
if (offset < 32) {
v = rtl83xx_r32(RTL838X_GPIO_PABC_DATA);
if (v & BIT(offset))
return 1;
return 0;
}
/* LED driver for PWR and SYS */
if (offset >= 32 && offset < 64) {
v = sw_r32(gpios->led_glb_ctrl);
if (v & BIT(offset-32))
return 1;
return 0;
}
/* BUG:
bit = (offset - 64) % 32;
if (offset >= 64 && offset < 96) {
if (sw_r32(RTL838X_LED1_SW_P_EN_CTRL) & BIT(bit))
return 1;
return 0;
}
if (offset >= 96 && offset < 128) {
if (sw_r32(RTL838X_LED1_SW_P_EN_CTRL) & BIT(bit))
return 1;
return 0;
}
if (offset >= 128 && offset < 160) {
if (sw_r32(RTL838X_LED1_SW_P_EN_CTRL) & BIT(bit))
return 1;
return 0;
}
*/
return 0;
}
void rtl8380_led_test(struct rtl838x_gpios *gpios, u32 mask)
{
int i;
u32 led_gbl = sw_r32(gpios->led_glb_ctrl);
u32 mode_sel, led_p_en;
if (soc_info.family == RTL8380_FAMILY_ID) {
mode_sel = sw_r32(RTL838X_LED_MODE_SEL);
led_p_en = sw_r32(RTL838X_LED_P_EN_CTRL);
}
/* 2 Leds for ports 0-23 and 24-27, 3 would be 0x7 */
sw_w32_mask(0x3f, 0x3 | (0x3 << 3), gpios->led_glb_ctrl);
if(soc_info.family == RTL8380_FAMILY_ID) {
/* Enable all leds */
sw_w32(0xFFFFFFF, RTL838X_LED_P_EN_CTRL);
}
/* Enable software control of all leds */
sw_w32(0xFFFFFFF, gpios->led_sw_ctrl);
sw_w32(0xFFFFFFF, gpios->led_sw_p_en_ctrl(0));
sw_w32(0xFFFFFFF, gpios->led_sw_p_en_ctrl(10));
sw_w32(0x0000000, gpios->led_sw_p_en_ctrl(20));
for (i = 0; i < 28; i++) {
if (mask & BIT(i))
sw_w32(5 | (5 << 3) | (5 << 6), gpios->led_sw_p_ctrl(i));
}
msleep(3000);
if (soc_info.family == RTL8380_FAMILY_ID)
sw_w32(led_p_en, RTL838X_LED_P_EN_CTRL);
/* Disable software control of all leds */
sw_w32(0x0000000, gpios->led_sw_ctrl);
sw_w32(0x0000000, gpios->led_sw_p_en_ctrl(0));
sw_w32(0x0000000, gpios->led_sw_p_en_ctrl(10));
sw_w32(0x0000000, gpios->led_sw_p_en_ctrl(20));
sw_w32(led_gbl, gpios->led_glb_ctrl);
if (soc_info.family == RTL8380_FAMILY_ID)
sw_w32(mode_sel, RTL838X_LED_MODE_SEL);
}
void take_port_leds(struct rtl838x_gpios *gpios)
{
int leds_per_port = gpios->leds_per_port;
int mode = gpios->led_mode;
pr_info("%s, %d, %x\n", __func__, leds_per_port, mode);
pr_debug("Bootloader settings: %x %x %x\n",
sw_r32(gpios->led_sw_p_en_ctrl(0)),
sw_r32(gpios->led_sw_p_en_ctrl(10)),
sw_r32(gpios->led_sw_p_en_ctrl(20))
);
if (soc_info.family == RTL8380_FAMILY_ID) {
pr_debug("led glb: %x, sel %x\n",
sw_r32(gpios->led_glb_ctrl), sw_r32(RTL838X_LED_MODE_SEL));
pr_debug("RTL838X_LED_P_EN_CTRL: %x", sw_r32(RTL838X_LED_P_EN_CTRL));
pr_debug("RTL838X_LED_MODE_CTRL: %x", sw_r32(RTL838X_LED_MODE_CTRL));
sw_w32_mask(3, 0, RTL838X_LED_MODE_SEL);
sw_w32(mode, RTL838X_LED_MODE_CTRL);
}
/* Enable software control of all leds */
sw_w32(0xFFFFFFF, gpios->led_sw_ctrl);
if (soc_info.family == RTL8380_FAMILY_ID)
sw_w32(0xFFFFFFF, RTL838X_LED_P_EN_CTRL);
sw_w32(0x0000000, gpios->led_sw_p_en_ctrl(0));
sw_w32(0x0000000, gpios->led_sw_p_en_ctrl(10));
sw_w32(0x0000000, gpios->led_sw_p_en_ctrl(20));
sw_w32_mask(0x3f, 0, gpios->led_glb_ctrl);
switch (leds_per_port) {
case 3:
sw_w32_mask(0, 0x7 | (0x7 << 3), gpios->led_glb_ctrl);
sw_w32(0xFFFFFFF, gpios->led_sw_p_en_ctrl(20));
/* FALLTHRU */
case 2:
sw_w32_mask(0, 0x3 | (0x3 << 3), gpios->led_glb_ctrl);
sw_w32(0xFFFFFFF, gpios->led_sw_p_en_ctrl(10));
/* FALLTHRU */
case 1:
sw_w32_mask(0, 0x1 | (0x1 << 3), gpios->led_glb_ctrl);
sw_w32(0xFFFFFFF, gpios->led_sw_p_en_ctrl(0));
break;
default:
pr_err("No LEDS configured for software control\n");
}
}
static const struct of_device_id rtl838x_gpio_of_match[] = {
{ .compatible = "realtek,rtl838x-gpio" },
{},
};
MODULE_DEVICE_TABLE(of, rtl838x_gpio_of_match);
static int rtl838x_gpio_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct rtl838x_gpios *gpios;
int err;
pr_info("Probing RTL838X GPIOs\n");
if (!np) {
dev_err(&pdev->dev, "No DT found\n");
return -EINVAL;
}
gpios = devm_kzalloc(dev, sizeof(*gpios), GFP_KERNEL);
if (!gpios)
return -ENOMEM;
gpios->id = soc_info.id;
switch (gpios->id) {
case 0x8332:
pr_debug("Found RTL8332M GPIO\n");
break;
case 0x8380:
pr_debug("Found RTL8380M GPIO\n");
break;
case 0x8381:
pr_debug("Found RTL8381M GPIO\n");
break;
case 0x8382:
pr_debug("Found RTL8382M GPIO\n");
break;
case 0x8391:
pr_debug("Found RTL8391 GPIO\n");
break;
case 0x8393:
pr_debug("Found RTL8393 GPIO\n");
break;
default:
pr_err("Unknown GPIO chip id (%04x)\n", gpios->id);
return -ENODEV;
}
if (soc_info.family == RTL8380_FAMILY_ID) {
gpios->led_glb_ctrl = gpios->led_glb_ctrl;
gpios->led_sw_ctrl = RTL838X_LED_SW_CTRL;
gpios->led_sw_p_ctrl = rtl838x_led_sw_p_ctrl;
gpios->led_sw_p_en_ctrl = rtl838x_led_sw_p_en_ctrl;
gpios->ext_gpio_dir = rtl838x_ext_gpio_dir;
gpios->ext_gpio_data = rtl838x_ext_gpio_data;
}
if (soc_info.family == RTL8390_FAMILY_ID) {
gpios->led_glb_ctrl = RTL839X_LED_GLB_CTRL;
gpios->led_sw_ctrl = RTL839X_LED_SW_CTRL;
gpios->led_sw_p_ctrl = rtl839x_led_sw_p_ctrl;
gpios->led_sw_p_en_ctrl = rtl839x_led_sw_p_en_ctrl;
gpios->ext_gpio_dir = rtl839x_ext_gpio_dir;
gpios->ext_gpio_data = rtl839x_ext_gpio_data;
}
gpios->dev = dev;
gpios->gc.base = 0;
/* 0-31: internal
* 32-63, LED control register
* 64-95: PORT-LED 0
* 96-127: PORT-LED 1
* 128-159: PORT-LED 2
*/
gpios->gc.ngpio = 160;
gpios->gc.label = "rtl838x";
gpios->gc.parent = dev;
gpios->gc.owner = THIS_MODULE;
gpios->gc.can_sleep = true;
gpios->irq = 31;
gpios->gc.direction_input = rtl838x_direction_input;
gpios->gc.direction_output = rtl838x_direction_output;
gpios->gc.set = rtl838x_gpio_set;
gpios->gc.get = rtl838x_gpio_get;
gpios->gc.get_direction = rtl838x_get_direction;
if (of_property_read_bool(np, "take-port-leds")) {
if (of_property_read_u32(np, "leds-per-port", &gpios->leds_per_port))
gpios->leds_per_port = 2;
if (of_property_read_u32(np, "led-mode", &gpios->led_mode))
gpios->led_mode = (0x1ea << 15) | 0x1ea;
if (of_property_read_u32(np, "num-leds", &gpios->num_leds))
gpios->num_leds = 32;
if (of_property_read_u32(np, "min-led", &gpios->min_led))
gpios->min_led = 0;
take_port_leds(gpios);
}
err = devm_gpiochip_add_data(dev, &gpios->gc, gpios);
return err;
}
static struct platform_driver rtl838x_gpio_driver = {
.driver = {
.name = "rtl838x-gpio",
.of_match_table = rtl838x_gpio_of_match,
},
.probe = rtl838x_gpio_probe,
};
module_platform_driver(rtl838x_gpio_driver);
MODULE_DESCRIPTION("Realtek RTL838X GPIO API support");
MODULE_LICENSE("GPL v2");

View File

@@ -0,0 +1,603 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/device.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include "rtl838x-spi.h"
#include <asm/mach-rtl838x/mach-rtl83xx.h>
extern struct rtl83xx_soc_info soc_info;
struct rtl838x_nor {
struct spi_nor nor;
struct device *dev;
volatile void __iomem *base;
bool fourByteMode;
u32 chipSize;
uint32_t flags;
uint32_t io_status;
};
static uint32_t spi_prep(struct rtl838x_nor *rtl838x_nor)
{
/* Needed because of MMU constraints */
SPI_WAIT_READY;
spi_w32w(SPI_CS_INIT, SFCSR); //deactivate CS0, CS1
spi_w32w(0, SFCSR); //activate CS0,CS1
spi_w32w(SPI_CS_INIT, SFCSR); //deactivate CS0, CS1
return (CS0 & rtl838x_nor->flags) ? (SPI_eCS0 & SPI_LEN_INIT)
: ((SPI_eCS1 & SPI_LEN_INIT) | SFCSR_CHIP_SEL);
}
static uint32_t rtl838x_nor_get_SR(struct rtl838x_nor *rtl838x_nor)
{
uint32_t sfcsr, sfdr;
sfcsr = spi_prep(rtl838x_nor);
sfdr = (SPINOR_OP_RDSR)<<24;
pr_debug("%s: rdid,sfcsr_val = %.8x,SFDR = %.8x\n", __func__, sfcsr, sfdr);
pr_debug("rdid,sfcsr = %.8x\n", sfcsr | SPI_LEN4);
spi_w32w(sfcsr, SFCSR);
spi_w32w(sfdr, SFDR);
spi_w32_mask(0, SPI_LEN4, SFCSR);
SPI_WAIT_READY;
return spi_r32(SFDR);
}
static void spi_write_disable(struct rtl838x_nor *rtl838x_nor)
{
uint32_t sfcsr, sfdr;
sfcsr = spi_prep(rtl838x_nor);
sfdr = (SPINOR_OP_WRDI) << 24;
spi_w32w(sfcsr, SFCSR);
spi_w32w(sfdr, SFDR);
pr_debug("%s: sfcsr_val = %.8x,SFDR = %.8x", __func__, sfcsr, sfdr);
spi_prep(rtl838x_nor);
}
static void spi_write_enable(struct rtl838x_nor *rtl838x_nor)
{
uint32_t sfcsr, sfdr;
sfcsr = spi_prep(rtl838x_nor);
sfdr = (SPINOR_OP_WREN) << 24;
spi_w32w(sfcsr, SFCSR);
spi_w32w(sfdr, SFDR);
pr_debug("%s: sfcsr_val = %.8x,SFDR = %.8x", __func__, sfcsr, sfdr);
spi_prep(rtl838x_nor);
}
static void spi_4b_set(struct rtl838x_nor *rtl838x_nor, bool enable)
{
uint32_t sfcsr, sfdr;
sfcsr = spi_prep(rtl838x_nor);
if (enable)
sfdr = (SPINOR_OP_EN4B) << 24;
else
sfdr = (SPINOR_OP_EX4B) << 24;
spi_w32w(sfcsr, SFCSR);
spi_w32w(sfdr, SFDR);
pr_debug("%s: sfcsr_val = %.8x,SFDR = %.8x", __func__, sfcsr, sfdr);
spi_prep(rtl838x_nor);
}
static int rtl838x_get_addr_mode(struct rtl838x_nor *rtl838x_nor)
{
int res = 3;
u32 reg;
sw_w32(0x3, RTL838X_INT_RW_CTRL);
if (!sw_r32(RTL838X_EXT_VERSION)) {
if (sw_r32(RTL838X_STRAP_DBG) & (1 << 29))
res = 4;
} else {
reg = sw_r32(RTL838X_PLL_CML_CTRL);
if ((reg & (1 << 30)) && (reg & (1 << 31)))
res = 4;
if ((!(reg & (1 << 30)))
&& sw_r32(RTL838X_STRAP_DBG) & (1 << 29))
res = 4;
}
sw_w32(0x0, RTL838X_INT_RW_CTRL);
return res;
}
static int rtl8390_get_addr_mode(struct rtl838x_nor *rtl838x_nor)
{
if (spi_r32(RTL8390_SOC_SPI_MMIO_CONF) & (1 << 9))
return 4;
return 3;
}
ssize_t rtl838x_do_read(struct rtl838x_nor *rtl838x_nor, loff_t from,
size_t length, u_char *buffer, uint8_t command)
{
uint32_t sfcsr, sfdr;
uint32_t len = length;
sfcsr = spi_prep(rtl838x_nor);
sfdr = command << 24;
/* Perform SPINOR_OP_READ: 1 byte command & 3 byte addr*/
sfcsr |= SPI_LEN4;
sfdr |= from;
spi_w32w(sfcsr, SFCSR);
spi_w32w(sfdr, SFDR);
/* Read Data, 4 bytes at a time */
while (length >= 4) {
SPI_WAIT_READY;
*((uint32_t *) buffer) = spi_r32(SFDR);
buffer += 4;
length -= 4;
}
/* The rest needs to be read 1 byte a time */
sfcsr &= SPI_LEN_INIT|SPI_LEN1;
SPI_WAIT_READY;
spi_w32w(sfcsr, SFCSR);
while (length > 0) {
SPI_WAIT_READY;
*(buffer) = spi_r32(SFDR) >> 24;
buffer++;
length--;
}
return len;
}
/*
* Do fast read in 3 or 4 Byte addressing mode
*/
static ssize_t rtl838x_do_4bf_read(struct rtl838x_nor *rtl838x_nor, loff_t from,
size_t length, u_char *buffer, uint8_t command)
{
int sfcsr_addr_len = rtl838x_nor->fourByteMode ? 0x3 : 0x2;
int sfdr_addr_shift = rtl838x_nor->fourByteMode ? 0 : 8;
uint32_t sfcsr;
uint32_t len = length;
pr_debug("Fast read from %llx, len %x, shift %d\n",
from, sfcsr_addr_len, sfdr_addr_shift);
sfcsr = spi_prep(rtl838x_nor);
/* Send read command */
spi_w32w(sfcsr | SPI_LEN1, SFCSR);
spi_w32w(command << 24, SFDR);
/* Send address */
spi_w32w(sfcsr | (sfcsr_addr_len << 28), SFCSR);
spi_w32w(from << sfdr_addr_shift, SFDR);
/* Dummy cycles */
spi_w32w(sfcsr | SPI_LEN1, SFCSR);
spi_w32w(0, SFDR);
/* Start reading */
spi_w32w(sfcsr | SPI_LEN4, SFCSR);
/* Read Data, 4 bytes at a time */
while (length >= 4) {
SPI_WAIT_READY;
*((uint32_t *) buffer) = spi_r32(SFDR);
buffer += 4;
length -= 4;
}
/* The rest needs to be read 1 byte a time */
sfcsr &= SPI_LEN_INIT|SPI_LEN1;
SPI_WAIT_READY;
spi_w32w(sfcsr, SFCSR);
while (length > 0) {
SPI_WAIT_READY;
*(buffer) = spi_r32(SFDR) >> 24;
buffer++;
length--;
}
return len;
}
/*
* Do write (Page Programming) in 3 or 4 Byte addressing mode
*/
static ssize_t rtl838x_do_4b_write(struct rtl838x_nor *rtl838x_nor, loff_t to,
size_t length, const u_char *buffer,
uint8_t command)
{
int sfcsr_addr_len = rtl838x_nor->fourByteMode ? 0x3 : 0x2;
int sfdr_addr_shift = rtl838x_nor->fourByteMode ? 0 : 8;
uint32_t sfcsr;
uint32_t len = length;
pr_debug("Write to %llx, len %x, shift %d\n",
to, sfcsr_addr_len, sfdr_addr_shift);
sfcsr = spi_prep(rtl838x_nor);
/* Send write command, command IO-width is 1 (bit 25/26) */
spi_w32w(sfcsr | SPI_LEN1 | (0 << 25), SFCSR);
spi_w32w(command << 24, SFDR);
/* Send address */
spi_w32w(sfcsr | (sfcsr_addr_len << 28) | (0 << 25), SFCSR);
spi_w32w(to << sfdr_addr_shift, SFDR);
/* Write Data, 1 byte at a time, if we are not 4-byte aligned */
if (((long)buffer) % 4) {
spi_w32w(sfcsr | SPI_LEN1, SFCSR);
while (length > 0 && (((long)buffer) % 4)) {
SPI_WAIT_READY;
spi_w32(*(buffer) << 24, SFDR);
buffer += 1;
length -= 1;
}
}
/* Now we can write 4 bytes at a time */
SPI_WAIT_READY;
spi_w32w(sfcsr | SPI_LEN4, SFCSR);
while (length >= 4) {
SPI_WAIT_READY;
spi_w32(*((uint32_t *)buffer), SFDR);
buffer += 4;
length -= 4;
}
/* Final bytes might need to be written 1 byte at a time, again */
SPI_WAIT_READY;
spi_w32w(sfcsr | SPI_LEN1, SFCSR);
while (length > 0) {
SPI_WAIT_READY;
spi_w32(*(buffer) << 24, SFDR);
buffer++;
length--;
}
return len;
}
static ssize_t rtl838x_nor_write(struct spi_nor *nor, loff_t to, size_t len,
const u_char *buffer)
{
int ret = 0;
uint32_t offset = 0;
struct rtl838x_nor *rtl838x_nor = nor->priv;
size_t l = len;
uint8_t cmd = SPINOR_OP_PP;
/* Do write in 4-byte mode on large Macronix chips */
if (rtl838x_nor->fourByteMode) {
cmd = SPINOR_OP_PP_4B;
spi_4b_set(rtl838x_nor, true);
}
pr_debug("In %s %8x to: %llx\n", __func__,
(unsigned int) rtl838x_nor, to);
while (l >= SPI_MAX_TRANSFER_SIZE) {
while
(rtl838x_nor_get_SR(rtl838x_nor) & SPI_WIP);
do {
spi_write_enable(rtl838x_nor);
} while (!(rtl838x_nor_get_SR(rtl838x_nor) & SPI_WEL));
ret = rtl838x_do_4b_write(rtl838x_nor, to + offset,
SPI_MAX_TRANSFER_SIZE, buffer+offset, cmd);
l -= SPI_MAX_TRANSFER_SIZE;
offset += SPI_MAX_TRANSFER_SIZE;
}
if (l > 0) {
while
(rtl838x_nor_get_SR(rtl838x_nor) & SPI_WIP);
do {
spi_write_enable(rtl838x_nor);
} while (!(rtl838x_nor_get_SR(rtl838x_nor) & SPI_WEL));
ret = rtl838x_do_4b_write(rtl838x_nor, to+offset,
len, buffer+offset, cmd);
}
return len;
}
static ssize_t rtl838x_nor_read(struct spi_nor *nor, loff_t from,
size_t length, u_char *buffer)
{
uint32_t offset = 0;
uint8_t cmd = SPINOR_OP_READ_FAST;
size_t l = length;
struct rtl838x_nor *rtl838x_nor = nor->priv;
/* Do fast read in 3, or 4-byte mode on large Macronix chips */
if (rtl838x_nor->fourByteMode) {
cmd = SPINOR_OP_READ_FAST_4B;
spi_4b_set(rtl838x_nor, true);
}
/* TODO: do timeout and return error */
pr_debug("Waiting for pending writes\n");
while
(rtl838x_nor_get_SR(rtl838x_nor) & SPI_WIP);
do {
spi_write_enable(rtl838x_nor);
} while (!(rtl838x_nor_get_SR(rtl838x_nor) & SPI_WEL));
pr_debug("cmd is %d\n", cmd);
pr_debug("%s: addr %.8llx to addr %.8x, cmd %.8x, size %d\n", __func__,
from, (u32)buffer, (u32)cmd, length);
while (l >= SPI_MAX_TRANSFER_SIZE) {
rtl838x_do_4bf_read(rtl838x_nor, from + offset,
SPI_MAX_TRANSFER_SIZE, buffer+offset, cmd);
l -= SPI_MAX_TRANSFER_SIZE;
offset += SPI_MAX_TRANSFER_SIZE;
}
if (l > 0)
rtl838x_do_4bf_read(rtl838x_nor, from + offset, l, buffer+offset, cmd);
return length;
}
static int rtl838x_erase(struct spi_nor *nor, loff_t offs)
{
struct rtl838x_nor *rtl838x_nor = nor->priv;
int sfcsr_addr_len = rtl838x_nor->fourByteMode ? 0x3 : 0x2;
int sfdr_addr_shift = rtl838x_nor->fourByteMode ? 0 : 8;
uint32_t sfcsr;
uint8_t cmd = SPINOR_OP_SE;
pr_debug("Erasing sector at %llx\n", offs);
/* Do erase in 4-byte mode on large Macronix chips */
if (rtl838x_nor->fourByteMode) {
cmd = SPINOR_OP_SE_4B;
spi_4b_set(rtl838x_nor, true);
}
/* TODO: do timeout and return error */
while
(rtl838x_nor_get_SR(rtl838x_nor) & SPI_WIP);
do {
spi_write_enable(rtl838x_nor);
} while (!(rtl838x_nor_get_SR(rtl838x_nor) & SPI_WEL));
sfcsr = spi_prep(rtl838x_nor);
/* Send erase command, command IO-width is 1 (bit 25/26) */
spi_w32w(sfcsr | SPI_LEN1 | (0 << 25), SFCSR);
spi_w32w(cmd << 24, SFDR);
/* Send address */
spi_w32w(sfcsr | (sfcsr_addr_len << 28) | (0 << 25), SFCSR);
spi_w32w(offs << sfdr_addr_shift, SFDR);
return 0;
}
static int rtl838x_nor_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
int length = len;
u8 *buffer = buf;
uint32_t sfcsr, sfdr;
struct rtl838x_nor *rtl838x_nor = nor->priv;
pr_debug("In %s: opcode %x, len %x\n", __func__, opcode, len);
sfcsr = spi_prep(rtl838x_nor);
sfdr = opcode << 24;
sfcsr |= SPI_LEN1;
spi_w32w(sfcsr, SFCSR);
spi_w32w(sfdr, SFDR);
while (length > 0) {
SPI_WAIT_READY;
*(buffer) = spi_r32(SFDR) >> 24;
buffer++;
length--;
}
return len;
}
static int rtl838x_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
uint32_t sfcsr, sfdr;
struct rtl838x_nor *rtl838x_nor = nor->priv;
pr_debug("In %s, opcode %x, len %x\n", __func__, opcode, len);
sfcsr = spi_prep(rtl838x_nor);
sfdr = opcode << 24;
if (len == 1) { /* SPINOR_OP_WRSR */
sfdr |= buf[0];
sfcsr |= SPI_LEN2;
}
spi_w32w(sfcsr, SFCSR);
spi_w32w(sfdr, SFDR);
return 0;
}
static int spi_enter_sio(struct spi_nor *nor)
{
uint32_t sfcsr, sfcr2, sfdr;
uint32_t ret = 0, reg = 0, size_bits;
struct rtl838x_nor *rtl838x_nor = nor->priv;
pr_debug("In %s\n", __func__);
rtl838x_nor->io_status = 0;
sfdr = SPI_C_RSTQIO << 24;
sfcsr = spi_prep(rtl838x_nor);
reg = spi_r32(SFCR2);
pr_debug("SFCR2: %x, size %x, rdopt: %x\n", reg, SFCR2_GETSIZE(reg),
(reg & SFCR2_RDOPT));
size_bits = rtl838x_nor->fourByteMode ? SFCR2_SIZE(0x6) : SFCR2_SIZE(0x7);
sfcr2 = SFCR2_HOLD_TILL_SFDR2 | size_bits
| (reg & SFCR2_RDOPT) | SFCR2_CMDIO(0)
| SFCR2_ADDRIO(0) | SFCR2_DUMMYCYCLE(4)
| SFCR2_DATAIO(0) | SFCR2_SFCMD(SPINOR_OP_READ_FAST);
pr_debug("SFCR2: %x, size %x\n", reg, SFCR2_GETSIZE(reg));
SPI_WAIT_READY;
spi_w32w(sfcr2, SFCR2);
spi_w32w(sfcsr, SFCSR);
spi_w32w(sfdr, SFDR);
spi_w32_mask(SFCR2_HOLD_TILL_SFDR2, 0, SFCR2);
rtl838x_nor->io_status &= ~IOSTATUS_CIO_MASK;
rtl838x_nor->io_status |= CIO1;
spi_prep(rtl838x_nor);
return ret;
}
int rtl838x_spi_nor_scan(struct spi_nor *nor, const char *name)
{
static const struct spi_nor_hwcaps hwcaps = {
.mask = SNOR_HWCAPS_READ | SNOR_HWCAPS_PP
| SNOR_HWCAPS_READ_FAST
};
struct rtl838x_nor *rtl838x_nor = nor->priv;
pr_debug("In %s\n", __func__);
spi_w32_mask(0, SFCR_EnableWBO, SFCR);
spi_w32_mask(0, SFCR_EnableRBO, SFCR);
rtl838x_nor->flags = CS0 | R_MODE;
spi_nor_scan(nor, NULL, &hwcaps);
pr_debug("------------- Got size: %llx\n", nor->mtd.size);
return 0;
}
int rtl838x_nor_init(struct rtl838x_nor *rtl838x_nor,
struct device_node *flash_node)
{
int ret;
struct spi_nor *nor;
pr_info("%s called\n", __func__);
nor = &rtl838x_nor->nor;
nor->dev = rtl838x_nor->dev;
nor->priv = rtl838x_nor;
spi_nor_set_flash_node(nor, flash_node);
nor->read_reg = rtl838x_nor_read_reg;
nor->write_reg = rtl838x_nor_write_reg;
nor->read = rtl838x_nor_read;
nor->write = rtl838x_nor_write;
nor->erase = rtl838x_erase;
nor->mtd.name = "rtl838x_nor";
nor->erase_opcode = rtl838x_nor->fourByteMode ? SPINOR_OP_SE_4B
: SPINOR_OP_SE;
/* initialized with NULL */
ret = rtl838x_spi_nor_scan(nor, NULL);
if (ret)
return ret;
spi_enter_sio(nor);
spi_write_disable(rtl838x_nor);
ret = mtd_device_parse_register(&nor->mtd, NULL, NULL, NULL, 0);
return ret;
}
static int rtl838x_nor_drv_probe(struct platform_device *pdev)
{
struct device_node *flash_np;
struct resource *res;
int ret;
struct rtl838x_nor *rtl838x_nor;
int addrMode;
pr_info("Initializing rtl838x_nor_driver\n");
if (!pdev->dev.of_node) {
dev_err(&pdev->dev, "No DT found\n");
return -EINVAL;
}
rtl838x_nor = devm_kzalloc(&pdev->dev, sizeof(*rtl838x_nor), GFP_KERNEL);
if (!rtl838x_nor)
return -ENOMEM;
platform_set_drvdata(pdev, rtl838x_nor);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
rtl838x_nor->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR((void *)rtl838x_nor->base))
return PTR_ERR((void *)rtl838x_nor->base);
pr_info("SPI resource base is %08x\n", (u32)rtl838x_nor->base);
rtl838x_nor->dev = &pdev->dev;
/* only support one attached flash */
flash_np = of_get_next_available_child(pdev->dev.of_node, NULL);
if (!flash_np) {
dev_err(&pdev->dev, "no SPI flash device to configure\n");
ret = -ENODEV;
goto nor_free;
}
/* Get the 3/4 byte address mode as configure by bootloader */
if (soc_info.family == RTL8390_FAMILY_ID)
addrMode = rtl8390_get_addr_mode(rtl838x_nor);
else
addrMode = rtl838x_get_addr_mode(rtl838x_nor);
pr_info("Address mode is %d bytes\n", addrMode);
if (addrMode == 4)
rtl838x_nor->fourByteMode = true;
ret = rtl838x_nor_init(rtl838x_nor, flash_np);
nor_free:
return ret;
}
static int rtl838x_nor_drv_remove(struct platform_device *pdev)
{
/* struct rtl8xx_nor *rtl838x_nor = platform_get_drvdata(pdev); */
return 0;
}
static const struct of_device_id rtl838x_nor_of_ids[] = {
{ .compatible = "realtek,rtl838x-nor"},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rtl838x_nor_of_ids);
static struct platform_driver rtl838x_nor_driver = {
.probe = rtl838x_nor_drv_probe,
.remove = rtl838x_nor_drv_remove,
.driver = {
.name = "rtl838x-nor",
.pm = NULL,
.of_match_table = rtl838x_nor_of_ids,
},
};
module_platform_driver(rtl838x_nor_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("RTL838x SPI NOR Flash Driver");

View File

@@ -0,0 +1,111 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2009 Realtek Semiconductor Corp.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _RTL838X_SPI_H
#define _RTL838X_SPI_H
/*
* Register access macros
*/
#define spi_r32(reg) readl(rtl838x_nor->base + reg)
#define spi_w32(val, reg) writel(val, rtl838x_nor->base + reg)
#define spi_w32_mask(clear, set, reg) \
spi_w32((spi_r32(reg) & ~(clear)) | (set), reg)
#define SPI_WAIT_READY do { \
} while (!(spi_r32(SFCSR) & SFCSR_SPI_RDY))
#define spi_w32w(val, reg) do { \
writel(val, rtl838x_nor->base + reg); \
SPI_WAIT_READY; \
} while (0)
#define SFCR (0x00) /*SPI Flash Configuration Register*/
#define SFCR_CLK_DIV(val) ((val)<<29)
#define SFCR_EnableRBO (1<<28)
#define SFCR_EnableWBO (1<<27)
#define SFCR_SPI_TCS(val) ((val)<<23) /*4 bit, 1111 */
#define SFCR2 (0x04) /*For memory mapped I/O */
#define SFCR2_SFCMD(val) ((val)<<24) /*8 bit, 1111_1111 */
#define SFCR2_SIZE(val) ((val)<<21) /*3 bit, 111 */
#define SFCR2_RDOPT (1<<20)
#define SFCR2_CMDIO(val) ((val)<<18) /*2 bit, 11 */
#define SFCR2_ADDRIO(val) ((val)<<16) /*2 bit, 11 */
#define SFCR2_DUMMYCYCLE(val) ((val)<<13) /*3 bit, 111 */
#define SFCR2_DATAIO(val) ((val)<<11) /*2 bit, 11 */
#define SFCR2_HOLD_TILL_SFDR2 (1<<10)
#define SFCR2_GETSIZE(x) (((x)&0x00E00000)>>21)
#define SFCSR (0x08) /*SPI Flash Control&Status Register*/
#define SFCSR_SPI_CSB0 (1<<31)
#define SFCSR_SPI_CSB1 (1<<30)
#define SFCSR_LEN(val) ((val)<<28) /*2 bits*/
#define SFCSR_SPI_RDY (1<<27)
#define SFCSR_IO_WIDTH(val) ((val)<<25) /*2 bits*/
#define SFCSR_CHIP_SEL (1<<24)
#define SFCSR_CMD_BYTE(val) ((val)<<16) /*8 bit, 1111_1111 */
#define SFDR (0x0C) /*SPI Flash Data Register*/
#define SFDR2 (0x10) /*SPI Flash Data Register - for post SPI bootup setting*/
#define SPI_CS_INIT (SFCSR_SPI_CSB0 | SFCSR_SPI_CSB1 | SPI_LEN1)
#define SPI_CS0 SFCSR_SPI_CSB0
#define SPI_CS1 SFCSR_SPI_CSB1
#define SPI_eCS0 ((SFCSR_SPI_CSB1)) /*and SFCSR to active CS0*/
#define SPI_eCS1 ((SFCSR_SPI_CSB0)) /*and SFCSR to active CS1*/
#define SPI_WIP (1) /* Write In Progress */
#define SPI_WEL (1<<1) /* Write Enable Latch*/
#define SPI_SST_QIO_WIP (1<<7) /* SST QIO Flash Write In Progress */
#define SPI_LEN_INIT 0xCFFFFFFF /* and SFCSR to init */
#define SPI_LEN4 0x30000000 /* or SFCSR to set */
#define SPI_LEN3 0x20000000 /* or SFCSR to set */
#define SPI_LEN2 0x10000000 /* or SFCSR to set */
#define SPI_LEN1 0x00000000 /* or SFCSR to set */
#define SPI_SETLEN(val) do { \
SPI_REG(SFCSR) &= 0xCFFFFFFF; \
SPI_REG(SFCSR) |= (val-1)<<28; \
} while (0)
/*
* SPI interface control
*/
#define RTL8390_SOC_SPI_MMIO_CONF (0x04)
#define IOSTATUS_CIO_MASK (0x00000038)
/* Chip select: bits 4-7*/
#define CS0 (1<<4)
#define R_MODE 0x04
/* io_status */
#define IO1 (1<<0)
#define IO2 (1<<1)
#define CIO1 (1<<3)
#define CIO2 (1<<4)
#define CMD_IO1 (1<<6)
#define W_ADDR_IO1 ((1)<<12)
#define R_ADDR_IO2 ((2)<<9)
#define R_DATA_IO2 ((2)<<15)
#define W_DATA_IO1 ((1)<<18)
/* Commands */
#define SPI_C_RSTQIO 0xFF
#define SPI_MAX_TRANSFER_SIZE 256
#endif /* _RTL838X_SPI_H */

View File

@@ -0,0 +1,8 @@
# SPDX-License-Identifier: GPL-2.0-only
config NET_DSA_RTL83XX
tristate "Realtek RTL838x/RTL839x switch support"
depends on RTL838X
select NET_DSA_TAG_TRAILER
---help---
This driver adds support for Realtek RTL83xx series switching.

View File

@@ -0,0 +1,3 @@
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_NET_DSA_RTL83XX) += common.o dsa.o \
rtl838x.o rtl839x.o storm.o debugfs.o

View File

@@ -0,0 +1,407 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl83xx.h"
extern struct rtl83xx_soc_info soc_info;
extern const struct rtl838x_reg rtl838x_reg;
extern const struct rtl838x_reg rtl839x_reg;
extern const struct dsa_switch_ops rtl83xx_switch_ops;
DEFINE_MUTEX(smi_lock);
// TODO: unused
static void dump_fdb(struct rtl838x_switch_priv *priv)
{
struct rtl838x_l2_entry e;
int i;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < priv->fib_entries; i++) {
priv->r->read_l2_entry_using_hash(i >> 2, i & 0x3, &e);
if (!e.valid) /* Check for invalid entry */
continue;
pr_debug("-> port %02d: mac %pM, vid: %d, rvid: %d, MC: %d, %d\n",
e.port, &e.mac[0], e.vid, e.rvid, e.is_ip_mc, e.is_ipv6_mc);
}
mutex_unlock(&priv->reg_mutex);
}
// TODO: unused
static void rtl83xx_port_get_stp_state(struct rtl838x_switch_priv *priv, int port)
{
u32 cmd, msti = 0;
u32 port_state[4];
int index, bit, i;
int pos = port;
int n = priv->family_id == RTL8380_FAMILY_ID ? 2 : 4;
/* CPU PORT can only be configured on RTL838x */
if (port >= priv->cpu_port || port > 51)
return;
mutex_lock(&priv->reg_mutex);
/* For the RTL839x, the bits are left-aligned in the 128 bit field */
if (priv->family_id == RTL8390_FAMILY_ID)
pos += 12;
index = n - (pos >> 4) - 1;
bit = (pos << 1) % 32;
if (priv->family_id == RTL8380_FAMILY_ID) {
cmd = BIT(15) /* Execute cmd */
| BIT(14) /* Read */
| 2 << 12 /* Table type 0b10 */
| (msti & 0xfff);
} else {
cmd = BIT(16) /* Execute cmd */
| 0 << 15 /* Read */
| 5 << 12 /* Table type 0b101 */
| (msti & 0xfff);
}
priv->r->exec_tbl0_cmd(cmd);
for (i = 0; i < n; i++)
port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
mutex_unlock(&priv->reg_mutex);
}
int rtl83xx_dsa_phy_read(struct dsa_switch *ds, int phy_addr, int phy_reg)
{
u32 val;
u32 offset = 0;
struct rtl838x_switch_priv *priv = ds->priv;
if (phy_addr >= 24 && phy_addr <= 27
&& priv->ports[24].phy == PHY_RTL838X_SDS) {
if (phy_addr == 26)
offset = 0x100;
val = sw_r32(MAPLE_SDS4_FIB_REG0r + offset + (phy_reg << 2)) & 0xffff;
return val;
}
if (soc_info.family == RTL8390_FAMILY_ID)
rtl839x_read_phy(phy_addr, 0, phy_reg, &val);
else
rtl838x_read_phy(phy_addr, 0, phy_reg, &val);
return val;
}
int rtl83xx_dsa_phy_write(struct dsa_switch *ds, int phy_addr, int phy_reg, u16 val)
{
u32 offset = 0;
struct rtl838x_switch_priv *priv = ds->priv;
if (phy_addr >= 24 && phy_addr <= 27
&& priv->ports[24].phy == PHY_RTL838X_SDS) {
if (phy_addr == 26)
offset = 0x100;
sw_w32(val, MAPLE_SDS4_FIB_REG0r + offset + (phy_reg << 2));
return 0;
}
if (soc_info.family == RTL8390_FAMILY_ID)
return rtl839x_write_phy(phy_addr, 0, phy_reg, val);
else
return rtl838x_write_phy(phy_addr, 0, phy_reg, val);
}
static int rtl83xx_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
int ret;
struct rtl838x_switch_priv *priv = bus->priv;
ret = rtl83xx_dsa_phy_read(priv->ds, addr, regnum);
return ret;
}
static int rtl83xx_mdio_write(struct mii_bus *bus, int addr, int regnum,
u16 val)
{
struct rtl838x_switch_priv *priv = bus->priv;
return rtl83xx_dsa_phy_write(priv->ds, addr, regnum, val);
}
static void rtl8380_sds_rst(int mac)
{
u32 offset = (mac == 24) ? 0 : 0x100;
sw_w32_mask(1 << 11, 0, RTL8380_SDS4_FIB_REG0 + offset);
sw_w32_mask(0x3, 0, RTL838X_SDS4_REG28 + offset);
sw_w32_mask(0x3, 0x3, RTL838X_SDS4_REG28 + offset);
sw_w32_mask(0, 0x1 << 6, RTL838X_SDS4_DUMMY0 + offset);
sw_w32_mask(0x1 << 6, 0, RTL838X_SDS4_DUMMY0 + offset);
pr_debug("SERDES reset: %d\n", mac);
}
static int __init rtl8380_sds_power(int mac, int val)
{
u32 mode = (val == 1) ? 0x4 : 0x9;
u32 offset = (mac == 24) ? 5 : 0;
if ((mac != 24) && (mac != 26)) {
pr_err("%s: not a fibre port: %d\n", __func__, mac);
return -1;
}
sw_w32_mask(0x1f << offset, mode << offset, RTL838X_SDS_MODE_SEL);
rtl8380_sds_rst(mac);
return 0;
}
static int __init rtl83xx_mdio_probe(struct rtl838x_switch_priv *priv)
{
struct device *dev = priv->dev;
struct device_node *dn, *mii_np = dev->of_node;
struct mii_bus *bus;
int ret;
u32 pn;
pr_debug("In %s\n", __func__);
mii_np = of_find_compatible_node(NULL, NULL, "realtek,rtl838x-mdio");
if (mii_np) {
pr_debug("Found compatible MDIO node!\n");
} else {
dev_err(priv->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
priv->mii_bus = of_mdio_find_bus(mii_np);
if (!priv->mii_bus) {
pr_debug("Deferring probe of mdio bus\n");
return -EPROBE_DEFER;
}
if (!of_device_is_available(mii_np))
ret = -ENODEV;
bus = devm_mdiobus_alloc(priv->ds->dev);
if (!bus)
return -ENOMEM;
bus->name = "rtl838x slave mii";
bus->read = &rtl83xx_mdio_read;
bus->write = &rtl83xx_mdio_write;
snprintf(bus->id, MII_BUS_ID_SIZE, "%s-%d", bus->name, dev->id);
bus->parent = dev;
priv->ds->slave_mii_bus = bus;
priv->ds->slave_mii_bus->priv = priv;
ret = mdiobus_register(priv->ds->slave_mii_bus);
if (ret && mii_np) {
of_node_put(dn);
return ret;
}
dn = mii_np;
for_each_node_by_name(dn, "ethernet-phy") {
if (of_property_read_u32(dn, "reg", &pn))
continue;
priv->ports[pn].dp = dsa_to_port(priv->ds, pn);
// Check for the integrated SerDes of the RTL8380M first
if (of_property_read_bool(dn, "phy-is-integrated")
&& priv->id == 0x8380 && pn >= 24) {
pr_debug("----> FÓUND A SERDES\n");
priv->ports[pn].phy = PHY_RTL838X_SDS;
continue;
}
if (of_property_read_bool(dn, "phy-is-integrated")
&& !of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8218B_INT;
continue;
}
if (!of_property_read_bool(dn, "phy-is-integrated")
&& of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8214FC;
continue;
}
if (!of_property_read_bool(dn, "phy-is-integrated")
&& !of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8218B_EXT;
continue;
}
}
/* Disable MAC polling the PHY so that we can start configuration */
priv->r->set_port_reg_le(0ULL, priv->r->smi_poll_ctrl);
/* Enable PHY control via SoC */
if (priv->family_id == RTL8380_FAMILY_ID) {
/* Enable PHY control via SoC */
sw_w32_mask(0, BIT(15), RTL838X_SMI_GLB_CTRL);
} else {
/* Disable PHY polling via SoC */
sw_w32_mask(BIT(7), 0, RTL839X_SMI_GLB_CTRL);
}
/* Power on fibre ports and reset them if necessary */
if (priv->ports[24].phy == PHY_RTL838X_SDS) {
pr_debug("Powering on fibre ports & reset\n");
rtl8380_sds_power(24, 1);
rtl8380_sds_power(26, 1);
}
pr_debug("%s done\n", __func__);
return 0;
}
static int __init rtl83xx_get_l2aging(struct rtl838x_switch_priv *priv)
{
int t = sw_r32(priv->r->l2_ctrl_1);
t &= priv->family_id == RTL8380_FAMILY_ID ? 0x7fffff : 0x1FFFFF;
if (priv->family_id == RTL8380_FAMILY_ID)
t = t * 128 / 625; /* Aging time in seconds. 0: L2 aging disabled */
else
t = (t * 3) / 5;
pr_debug("L2 AGING time: %d sec\n", t);
pr_debug("Dynamic aging for ports: %x\n", sw_r32(priv->r->l2_port_aging_out));
return t;
}
static int __init rtl83xx_sw_probe(struct platform_device *pdev)
{
int err = 0, i;
struct rtl838x_switch_priv *priv;
struct device *dev = &pdev->dev;
u64 irq_mask;
pr_debug("Probing RTL838X switch device\n");
if (!pdev->dev.of_node) {
dev_err(dev, "No DT found\n");
return -EINVAL;
}
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->ds = dsa_switch_alloc(dev, DSA_MAX_PORTS);
if (!priv->ds)
return -ENOMEM;
priv->ds->dev = dev;
priv->ds->priv = priv;
priv->ds->ops = &rtl83xx_switch_ops;
priv->dev = dev;
priv->family_id = soc_info.family;
priv->id = soc_info.id;
if (soc_info.family == RTL8380_FAMILY_ID) {
priv->cpu_port = RTL838X_CPU_PORT;
priv->port_mask = 0x1f;
priv->r = &rtl838x_reg;
priv->ds->num_ports = 30;
priv->fib_entries = 8192;
rtl8380_get_version(priv);
} else {
priv->cpu_port = RTL839X_CPU_PORT;
priv->port_mask = 0x3f;
priv->r = &rtl839x_reg;
priv->ds->num_ports = 53;
priv->fib_entries = 16384;
rtl8390_get_version(priv);
}
pr_debug("Chip version %c\n", priv->version);
err = rtl83xx_mdio_probe(priv);
if (err) {
/* Probing fails the 1st time because of missing ethernet driver
* initialization. Use this to disable traffic in case the bootloader left if on
*/
return err;
}
err = dsa_register_switch(priv->ds);
if (err) {
dev_err(dev, "Error registering switch: %d\n", err);
return err;
}
/* Enable link and media change interrupts. Are the SERDES masks needed? */
sw_w32_mask(0, 3, priv->r->isr_glb_src);
/* ... for all ports */
irq_mask = soc_info.family == RTL8380_FAMILY_ID ? 0x0FFFFFFF : 0xFFFFFFFFFFFFFULL;
priv->r->set_port_reg_le(irq_mask, priv->r->isr_port_link_sts_chg);
priv->r->set_port_reg_le(irq_mask, priv->r->imr_port_link_sts_chg);
priv->link_state_irq = platform_get_irq(pdev, 0);;
if (priv->family_id == RTL8380_FAMILY_ID) {
err = request_irq(priv->link_state_irq, rtl838x_switch_irq,
IRQF_SHARED, "rtl838x-link-state", priv->ds);
} else {
err = request_irq(priv->link_state_irq, rtl839x_switch_irq,
IRQF_SHARED, "rtl839x-link-state", priv->ds);
}
if (err) {
dev_err(dev, "Error setting up switch interrupt.\n");
/* Need to free allocated switch here */
}
/* Enable interrupts for switch */
sw_w32(0x1, priv->r->imr_glb);
rtl83xx_get_l2aging(priv);
/*
if (priv->family_id == RTL8380_FAMILY_ID)
rtl83xx_storm_control_init(priv);
*/
/* Clear all destination ports for mirror groups */
for (i = 0; i < 4; i++)
priv->mirror_group_ports[i] = -1;
rtl838x_dbgfs_init(priv);
return err;
}
static int rtl83xx_sw_remove(struct platform_device *pdev)
{
// TODO:
pr_debug("Removing platform driver for rtl83xx-sw\n");
return 0;
}
static const struct of_device_id rtl83xx_switch_of_ids[] = {
{ .compatible = "realtek,rtl83xx-switch"},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rtl83xx_switch_of_ids);
static struct platform_driver rtl83xx_switch_driver = {
.probe = rtl83xx_sw_probe,
.remove = rtl83xx_sw_remove,
.driver = {
.name = "rtl83xx-switch",
.pm = NULL,
.of_match_table = rtl83xx_switch_of_ids,
},
};
module_platform_driver(rtl83xx_switch_driver);
MODULE_AUTHOR("B. Koblitz");
MODULE_DESCRIPTION("RTL83XX SoC Switch Driver");
MODULE_LICENSE("GPL");

View File

@@ -0,0 +1,99 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/debugfs.h>
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl838x.h"
#define RTL838X_DRIVER_NAME "rtl838x"
static const struct debugfs_reg32 port_ctrl_regs[] = {
{ .name = "port_isolation", .offset = RTL838X_PORT_ISO_CTRL(0), },
{ .name = "mac_force_mode", .offset = RTL838X_MAC_FORCE_MODE_CTRL, },
};
void rtl838x_dbgfs_cleanup(struct rtl838x_switch_priv *priv)
{
debugfs_remove_recursive(priv->dbgfs_dir);
// kfree(priv->dbgfs_entries);
}
static int rtl838x_dbgfs_port_init(struct dentry *parent, struct rtl838x_switch_priv *priv,
int port)
{
struct dentry *port_dir;
struct debugfs_regset32 *port_ctrl_regset;
port_dir = debugfs_create_dir(priv->ports[port].dp->name, parent);
debugfs_create_x32("rate_uc", 0644, port_dir,
(u32 *)(RTL838X_SW_BASE + RTL838X_STORM_CTRL_PORT_UC(port)));
debugfs_create_x32("rate_mc", 0644, port_dir,
(u32 *)(RTL838X_SW_BASE + RTL838X_STORM_CTRL_PORT_BC(port)));
debugfs_create_x32("rate_bc", 0644, port_dir,
(u32 *)(RTL838X_SW_BASE + RTL838X_STORM_CTRL_PORT_BC(port)));
debugfs_create_u32("id", 0444, port_dir, &priv->ports[port].dp->index);
debugfs_create_x32("vlan_port_tag_sts_ctrl", 0644, port_dir,
(u32 *)(RTL838X_SW_BASE + RTL838X_VLAN_PORT_TAG_STS_CTRL(port)));
port_ctrl_regset = devm_kzalloc(priv->dev, sizeof(*port_ctrl_regset), GFP_KERNEL);
if (!port_ctrl_regset)
return -ENOMEM;
port_ctrl_regset->regs = port_ctrl_regs;
port_ctrl_regset->nregs = ARRAY_SIZE(port_ctrl_regs);
port_ctrl_regset->base = RTL838X_SW_BASE + (port << 2);
debugfs_create_regset32("port_ctrl", 0400, port_dir, port_ctrl_regset);
return 0;
}
void rtl838x_dbgfs_init(struct rtl838x_switch_priv *priv)
{
struct dentry *rtl838x_dir;
struct dentry *port_dir;
struct debugfs_regset32 *port_ctrl_regset;
int ret, i;
rtl838x_dir = debugfs_lookup(RTL838X_DRIVER_NAME, NULL);
if (!rtl838x_dir)
rtl838x_dir = debugfs_create_dir(RTL838X_DRIVER_NAME, NULL);
priv->dbgfs_dir = rtl838x_dir;
debugfs_create_u32("soc", 0444, rtl838x_dir,
(u32 *)(RTL838X_SW_BASE + RTL838X_MODEL_NAME_INFO));
/* Create one directory per port */
for (i = 0; i < priv->cpu_port; i++) {
if (priv->ports[i].phy) {
pr_debug("debugfs, port %d\n", i);
ret = rtl838x_dbgfs_port_init(rtl838x_dir, priv, i);
if (ret)
goto err;
}
}
/* Create directory for CPU-port */
port_dir = debugfs_create_dir("cpu_port", rtl838x_dir); port_ctrl_regset = devm_kzalloc(priv->dev, sizeof(*port_ctrl_regset), GFP_KERNEL);
if (!port_ctrl_regset) {
ret = -ENOMEM;
goto err;
}
port_ctrl_regset->regs = port_ctrl_regs;
port_ctrl_regset->nregs = ARRAY_SIZE(port_ctrl_regs);
port_ctrl_regset->base = RTL838X_SW_BASE + (priv->cpu_port << 2);
debugfs_create_regset32("port_ctrl", 0400, port_dir, port_ctrl_regset);
debugfs_create_u8("id", 0444, port_dir, &priv->cpu_port);
return;
err:
rtl838x_dbgfs_cleanup(priv);
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,476 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl83xx.h"
extern struct mutex smi_lock;
static inline void rtl838x_mask_port_reg(u64 clear, u64 set, int reg)
{
sw_w32_mask((u32)clear, (u32)set, reg);
}
static inline void rtl838x_set_port_reg(u64 set, int reg)
{
sw_w32(set, reg);
}
static inline u64 rtl838x_get_port_reg(int reg)
{
return ((u64) sw_r32(reg));
}
static inline int rtl838x_stat_port_std_mib(int p)
{
return RTL838X_STAT_PORT_STD_MIB + (p << 8);
}
static inline int rtl838x_port_iso_ctrl(int p)
{
return RTL838X_PORT_ISO_CTRL(p);
}
static inline void rtl838x_exec_tbl0_cmd(u32 cmd)
{
sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_0);
do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_0) & BIT(15));
}
static inline void rtl838x_exec_tbl1_cmd(u32 cmd)
{
sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_1);
do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_1) & BIT(15));
}
static inline int rtl838x_tbl_access_data_0(int i)
{
return RTL838X_TBL_ACCESS_DATA_0(i);
}
static void rtl838x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 cmd, v;
cmd = BIT(15) /* Execute cmd */
| BIT(14) /* Read */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
rtl838x_exec_tbl0_cmd(cmd);
info->tagged_ports = sw_r32(RTL838X_TBL_ACCESS_DATA_0(0));
v = sw_r32(RTL838X_TBL_ACCESS_DATA_0(1));
info->profile_id = v & 0x7;
info->hash_mc_fid = !!(v & 0x8);
info->hash_uc_fid = !!(v & 0x10);
info->fid = (v >> 5) & 0x3f;
cmd = BIT(15) /* Execute cmd */
| BIT(14) /* Read */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
rtl838x_exec_tbl1_cmd(cmd);
info->untagged_ports = sw_r32(RTL838X_TBL_ACCESS_DATA_1(0));
}
static void rtl838x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 cmd = BIT(15) /* Execute cmd */
| 0 << 14 /* Write */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
u32 v;
sw_w32(info->tagged_ports, RTL838X_TBL_ACCESS_DATA_0(0));
v = info->profile_id;
v |= info->hash_mc_fid ? 0x8 : 0;
v |= info->hash_uc_fid ? 0x10 : 0;
v |= ((u32)info->fid) << 5;
sw_w32(v, RTL838X_TBL_ACCESS_DATA_0(1));
rtl838x_exec_tbl0_cmd(cmd);
}
static void rtl838x_vlan_set_untagged(u32 vlan, u64 portmask)
{
u32 cmd = BIT(15) /* Execute cmd */
| 0 << 14 /* Write */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
sw_w32(portmask & 0x1fffffff, RTL838X_TBL_ACCESS_DATA_1(0));
rtl838x_exec_tbl1_cmd(cmd);
}
static inline int rtl838x_mac_force_mode_ctrl(int p)
{
return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
}
static inline int rtl838x_mac_port_ctrl(int p)
{
return RTL838X_MAC_PORT_CTRL(p);
}
static inline int rtl838x_l2_port_new_salrn(int p)
{
return RTL838X_L2_PORT_NEW_SALRN(p);
}
static inline int rtl838x_l2_port_new_sa_fwd(int p)
{
return RTL838X_L2_PORT_NEW_SA_FWD(p);
}
static inline int rtl838x_mir_ctrl(int group)
{
return RTL838X_MIR_CTRL(group);
}
static inline int rtl838x_mir_dpm(int group)
{
return RTL838X_MIR_DPM_CTRL(group);
}
static inline int rtl838x_mir_spm(int group)
{
return RTL838X_MIR_SPM_CTRL(group);
}
static inline int rtl838x_mac_link_spd_sts(int p)
{
return RTL838X_MAC_LINK_SPD_STS(p);
}
static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 position, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
/* Search in SRAM, with hash and at position in hash bucket (0-3) */
u32 idx = (0 << 14) | (hash << 2) | position;
u32 cmd = BIT(16) /* Execute cmd */
| BIT(15) /* Read */
| 0 << 13 /* Table type 0b00 */
| (idx & 0x1fff);
sw_w32(cmd, RTL838X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL838X_TBL_ACCESS_L2_CTRL) & BIT(16));
r[0] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(0));
r[1] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(1));
r[2] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(2));
e->mac[0] = (r[1] >> 20);
e->mac[1] = (r[1] >> 12);
e->mac[2] = (r[1] >> 4);
e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
e->mac[4] = (r[2] >> 20);
e->mac[5] = (r[2] >> 12);
e->is_static = !!((r[0] >> 19) & 1);
e->vid = r[0] & 0xfff;
e->rvid = r[2] & 0xfff;
e->port = (r[0] >> 12) & 0x1f;
e->valid = true;
if (!(r[0] >> 17)) /* Check for invalid entry */
e->valid = false;
if (e->valid)
pr_debug("Found in Hash: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
entry = (((u64) r[1]) << 32) | (r[2] & 0xfffff000) | (r[0] & 0xfff);
return entry;
}
static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
u32 cmd = BIT(16) /* Execute cmd */
| BIT(15) /* Read */
| BIT(13) /* Table type 0b01 */
| (idx & 0x3f);
sw_w32(cmd, RTL838X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL838X_TBL_ACCESS_L2_CTRL) & BIT(16));
r[0] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(0));
r[1] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(1));
r[2] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(2));
e->mac[0] = (r[1] >> 20);
e->mac[1] = (r[1] >> 12);
e->mac[2] = (r[1] >> 4);
e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
e->mac[4] = (r[2] >> 20);
e->mac[5] = (r[2] >> 12);
e->is_static = !!((r[0] >> 19) & 1);
e->vid = r[0] & 0xfff;
e->rvid = r[2] & 0xfff;
e->port = (r[0] >> 12) & 0x1f;
e->valid = true;
if (!(r[0] >> 17)) /* Check for invalid entry */
e->valid = false;
if (e->valid)
pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
entry = (((u64) r[1]) << 32) | (r[2] & 0xfffff000) | (r[0] & 0xfff);
return entry;
}
static inline int rtl838x_vlan_profile(int profile)
{
return RTL838X_VLAN_PROFILE(profile);
}
static inline int rtl838x_vlan_port_egr_filter(int port)
{
return RTL838X_VLAN_PORT_EGR_FLTR;
}
static inline int rtl838x_vlan_port_igr_filter(int port)
{
return RTL838X_VLAN_PORT_IGR_FLTR(port);
}
static inline int rtl838x_vlan_port_pb(int port)
{
return RTL838X_VLAN_PORT_PB_VLAN(port);
}
static inline int rtl838x_vlan_port_tag_sts_ctrl(int port)
{
return RTL838X_VLAN_PORT_TAG_STS_CTRL(port);
}
const struct rtl838x_reg rtl838x_reg = {
.mask_port_reg_be = rtl838x_mask_port_reg,
.set_port_reg_be = rtl838x_set_port_reg,
.get_port_reg_be = rtl838x_get_port_reg,
.mask_port_reg_le = rtl838x_mask_port_reg,
.set_port_reg_le = rtl838x_set_port_reg,
.get_port_reg_le = rtl838x_get_port_reg,
.stat_port_rst = RTL838X_STAT_PORT_RST,
.stat_rst = RTL838X_STAT_RST,
.stat_port_std_mib = rtl838x_stat_port_std_mib,
.port_iso_ctrl = rtl838x_port_iso_ctrl,
.l2_ctrl_0 = RTL838X_L2_CTRL_0,
.l2_ctrl_1 = RTL838X_L2_CTRL_1,
.l2_port_aging_out = RTL838X_L2_PORT_AGING_OUT,
.smi_poll_ctrl = RTL838X_SMI_POLL_CTRL,
.l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
.exec_tbl0_cmd = rtl838x_exec_tbl0_cmd,
.exec_tbl1_cmd = rtl838x_exec_tbl1_cmd,
.tbl_access_data_0 = rtl838x_tbl_access_data_0,
.isr_glb_src = RTL838X_ISR_GLB_SRC,
.isr_port_link_sts_chg = RTL838X_ISR_PORT_LINK_STS_CHG,
.imr_port_link_sts_chg = RTL838X_IMR_PORT_LINK_STS_CHG,
.imr_glb = RTL838X_IMR_GLB,
.vlan_tables_read = rtl838x_vlan_tables_read,
.vlan_set_tagged = rtl838x_vlan_set_tagged,
.vlan_set_untagged = rtl838x_vlan_set_untagged,
.mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
.mac_port_ctrl = rtl838x_mac_port_ctrl,
.l2_port_new_salrn = rtl838x_l2_port_new_salrn,
.l2_port_new_sa_fwd = rtl838x_l2_port_new_sa_fwd,
.mir_ctrl = rtl838x_mir_ctrl,
.mir_dpm = rtl838x_mir_dpm,
.mir_spm = rtl838x_mir_spm,
.mac_link_sts = RTL838X_MAC_LINK_STS,
.mac_link_dup_sts = RTL838X_MAC_LINK_DUP_STS,
.mac_link_spd_sts = rtl838x_mac_link_spd_sts,
.mac_rx_pause_sts = RTL838X_MAC_RX_PAUSE_STS,
.mac_tx_pause_sts = RTL838X_MAC_TX_PAUSE_STS,
.read_l2_entry_using_hash = rtl838x_read_l2_entry_using_hash,
.read_cam = rtl838x_read_cam,
.vlan_profile = rtl838x_vlan_profile,
.vlan_port_egr_filter = rtl838x_vlan_port_egr_filter,
.vlan_port_igr_filter = rtl838x_vlan_port_igr_filter,
.vlan_port_pb = rtl838x_vlan_port_pb,
.vlan_port_tag_sts_ctrl = rtl838x_vlan_port_tag_sts_ctrl,
};
irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
u32 status = sw_r32(RTL838X_ISR_GLB_SRC);
u32 ports = sw_r32(RTL838X_ISR_PORT_LINK_STS_CHG);
u32 link;
int i;
/* Clear status */
sw_w32(ports, RTL838X_ISR_PORT_LINK_STS_CHG);
pr_debug("RTL8380 Link change: status: %x, ports %x\n", status, ports);
for (i = 0; i < 28; i++) {
if (ports & BIT(i)) {
link = sw_r32(RTL838X_MAC_LINK_STS);
if (link & BIT(i))
dsa_port_phylink_mac_change(ds, i, true);
else
dsa_port_phylink_mac_change(ds, i, false);
}
}
return IRQ_HANDLED;
}
int rtl838x_smi_wait_op(int timeout)
{
do {
timeout--;
udelay(10);
} while ((sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & 0x1) && (timeout >= 0));
if (timeout <= 0)
return -1;
return 0;
}
/*
* Reads a register in a page from the PHY
*/
int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
u32 v;
u32 park_page;
if (port > 31) {
*val = 0xffff;
return 0;
}
if (page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
if (rtl838x_smi_wait_op(10000))
goto timeout;
sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
v = reg << 20 | page << 3;
sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
if (rtl838x_smi_wait_op(10000))
goto timeout;
*val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
mutex_unlock(&smi_lock);
return 0;
timeout:
mutex_unlock(&smi_lock);
return -ETIMEDOUT;
}
/*
* Write to a register in a page of the PHY
*/
int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
u32 v;
u32 park_page;
val &= 0xffff;
if (port > 31 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
if (rtl838x_smi_wait_op(10000))
goto timeout;
sw_w32(BIT(port), RTL838X_SMI_ACCESS_PHY_CTRL_0);
mdelay(10);
sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
v = reg << 20 | page << 3 | 0x4;
sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
if (rtl838x_smi_wait_op(10000))
goto timeout;
mutex_unlock(&smi_lock);
return 0;
timeout:
mutex_unlock(&smi_lock);
return -ETIMEDOUT;
}
void rtl8380_get_version(struct rtl838x_switch_priv *priv)
{
u32 rw_save, info_save;
u32 info;
rw_save = sw_r32(RTL838X_INT_RW_CTRL);
sw_w32(rw_save | 0x3, RTL838X_INT_RW_CTRL);
info_save = sw_r32(RTL838X_CHIP_INFO);
sw_w32(info_save | 0xA0000000, RTL838X_CHIP_INFO);
info = sw_r32(RTL838X_CHIP_INFO);
sw_w32(info_save, RTL838X_CHIP_INFO);
sw_w32(rw_save, RTL838X_INT_RW_CTRL);
if ((info & 0xFFFF) == 0x6275) {
if (((info >> 16) & 0x1F) == 0x1)
priv->version = RTL8380_VERSION_A;
else if (((info >> 16) & 0x1F) == 0x2)
priv->version = RTL8380_VERSION_B;
else
priv->version = RTL8380_VERSION_B;
} else {
priv->version = '-';
}
}
/*
* Applies the same hash algorithm as the one used currently by the ASIC
*/
u32 rtl838x_hash(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 h1, h2, h3, h;
if (sw_r32(priv->r->l2_ctrl_0) & 1) {
h1 = (seed >> 11) & 0x7ff;
h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
h2 = (seed >> 33) & 0x7ff;
h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);
h3 = (seed >> 44) & 0x7ff;
h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);
h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
} else {
h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff)
^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
}
return h;
}
void rtl838x_vlan_profile_dump(int index)
{
u32 profile;
if (index < 0 || index > 7)
return;
profile = sw_r32(RTL838X_VLAN_PROFILE(index));
pr_debug("VLAN %d: L2 learning: %d, L2 Unknown MultiCast Field %x, \
IPv4 Unknown MultiCast Field %x, IPv6 Unknown MultiCast Field: %x",
index, profile & 1, (profile >> 1) & 0x1ff, (profile >> 10) & 0x1ff,
(profile >> 19) & 0x1ff);
}

View File

@@ -0,0 +1,293 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef _RTL838X_H
#define _RTL838X_H
#include <net/dsa.h>
/*
* Register definition
*/
#define RTL838X_CPU_PORT 28
#define RTL839X_CPU_PORT 52
#define RTL838X_MAC_PORT_CTRL(port) (0xd560 + (((port) << 7)))
#define RTL839X_MAC_PORT_CTRL(port) (0x8004 + (((port) << 7)))
#define RTL838X_RST_GLB_CTRL_0 (0x003c)
#define RTL838X_MAC_FORCE_MODE_CTRL (0xa104)
#define RTL839X_MAC_FORCE_MODE_CTRL (0x02bc)
#define RTL838X_DMY_REG31 (0x3b28)
#define RTL838X_SDS_MODE_SEL (0x0028)
#define RTL838X_SDS_CFG_REG (0x0034)
#define RTL838X_INT_MODE_CTRL (0x005c)
#define RTL838X_CHIP_INFO (0x00d8)
#define RTL839X_CHIP_INFO (0x0ff4)
#define RTL838X_SDS4_REG28 (0xef80)
#define RTL838X_SDS4_DUMMY0 (0xef8c)
#define RTL838X_SDS5_EXT_REG6 (0xf18c)
#define RTL838X_PORT_ISO_CTRL(port) (0x4100 + ((port) << 2))
#define RTL839X_PORT_ISO_CTRL(port) (0x1400 + ((port) << 3))
#define RTL8380_SDS4_FIB_REG0 (0xF800)
#define RTL838X_STAT_PORT_STD_MIB (0x1200)
#define RTL839X_STAT_PORT_STD_MIB (0xC000)
#define RTL838X_STAT_RST (0x3100)
#define RTL839X_STAT_RST (0xF504)
#define RTL838X_STAT_PORT_RST (0x3104)
#define RTL839X_STAT_PORT_RST (0xF508)
#define RTL838X_STAT_CTRL (0x3108)
#define RTL839X_STAT_CTRL (0x04cc)
/* Registers of the internal Serdes of the 8390 */
#define RTL8390_SDS0_1_XSG0 (0xA000)
#define RTL8390_SDS0_1_XSG1 (0xA100)
#define RTL839X_SDS12_13_XSG0 (0xB800)
#define RTL839X_SDS12_13_XSG1 (0xB900)
#define RTL839X_SDS12_13_PWR0 (0xb880)
#define RTL839X_SDS12_13_PWR1 (0xb980)
/* Registers of the internal Serdes of the 8380 */
#define MAPLE_SDS4_REG0r RTL838X_SDS4_REG28
#define MAPLE_SDS5_REG0r (RTL838X_SDS4_REG28 + 0x100)
#define MAPLE_SDS4_REG3r RTL838X_SDS4_DUMMY0
#define MAPLE_SDS5_REG3r (RTL838X_SDS4_REG28 + 0x100)
#define MAPLE_SDS4_FIB_REG0r (RTL838X_SDS4_REG28 + 0x880)
#define MAPLE_SDS5_FIB_REG0r (RTL838X_SDS4_REG28 + 0x980)
/* VLAN registers */
#define RTL838X_VLAN_PROFILE(idx) (0x3A88 + ((idx) << 2))
#define RTL838X_VLAN_PORT_EGR_FLTR (0x3A84)
#define RTL838X_VLAN_PORT_PB_VLAN(port) (0x3C00 + ((port) << 2))
#define RTL838X_VLAN_PORT_IGR_FLTR(port) (0x3A7C + (((port >> 4) << 2)))
#define RTL838X_VLAN_PORT_IGR_FLTR_0 (0x3A7C)
#define RTL838X_VLAN_PORT_IGR_FLTR_1 (0x3A7C + 4)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL(port) (0xA530 + (((port) << 2)))
#define RTL839X_VLAN_PROFILE(idx) (0x25C0 + (((idx) << 3)))
#define RTL839X_VLAN_CTRL (0x26D4)
#define RTL839X_VLAN_PORT_PB_VLAN(port) (0x26D8 + (((port) << 2)))
#define RTL839X_VLAN_PORT_IGR_FLTR(port) (0x27B4 + (((port >> 4) << 2)))
#define RTL839X_VLAN_PORT_EGR_FLTR(port) (0x27C4 + (((port >> 5) << 2)))
#define RTL839X_VLAN_PORT_TAG_STS_CTRL(port) (0x6828 + (((port) << 2)))
/* Table 0/1 access registers */
#define RTL838X_TBL_ACCESS_CTRL_0 (0x6914)
#define RTL838X_TBL_ACCESS_DATA_0(idx) (0x6918 + ((idx) << 2))
#define RTL838X_TBL_ACCESS_CTRL_1 (0xA4C8)
#define RTL838X_TBL_ACCESS_DATA_1(idx) (0xA4CC + ((idx) << 2))
#define RTL839X_TBL_ACCESS_CTRL_0 (0x1190)
#define RTL839X_TBL_ACCESS_DATA_0(idx) (0x1194 + ((idx) << 2))
#define RTL839X_TBL_ACCESS_CTRL_1 (0x6b80)
#define RTL839X_TBL_ACCESS_DATA_1(idx) (0x6b84 + ((idx) << 2))
/* MAC handling */
#define RTL838X_MAC_LINK_STS (0xa188)
#define RTL839X_MAC_LINK_STS (0x0390)
#define RTL838X_MAC_LINK_SPD_STS(port) (0xa190 + (((port >> 4) << 2)))
#define RTL839X_MAC_LINK_SPD_STS(port) (0x03a0 + (((port >> 4) << 2)))
#define RTL838X_MAC_LINK_DUP_STS (0xa19c)
#define RTL839X_MAC_LINK_DUP_STS (0x03b0)
#define RTL838X_MAC_TX_PAUSE_STS (0xa1a0)
#define RTL839X_MAC_TX_PAUSE_STS (0x03b8)
#define RTL838X_MAC_RX_PAUSE_STS (0xa1a4)
#define RTL839X_MAC_RX_PAUSE_STS (0x03c0)
#define RTL838X_EEE_TX_TIMER_GIGA_CTRL (0xaa04)
#define RTL838X_EEE_TX_TIMER_GELITE_CTRL (0xaa08)
#define RTL838X_DMA_IF_CTRL (0x9f58)
/* MAC link state bits */
#define FORCE_EN (1 << 0)
#define FORCE_LINK_EN (1 << 1)
#define NWAY_EN (1 << 2)
#define DUPLX_MODE (1 << 3)
#define TX_PAUSE_EN (1 << 6)
#define RX_PAUSE_EN (1 << 7)
/* EEE */
#define RTL838X_MAC_EEE_ABLTY (0xa1a8)
#define RTL838X_EEE_PORT_TX_EN (0x014c)
#define RTL838X_EEE_PORT_RX_EN (0x0150)
#define RTL838X_EEE_CLK_STOP_CTRL (0x0148)
/* L2 functionality */
#define RTL838X_L2_CTRL_0 (0x3200)
#define RTL839X_L2_CTRL_0 (0x3800)
#define RTL838X_L2_CTRL_1 (0x3204)
#define RTL839X_L2_CTRL_1 (0x3804)
#define RTL838X_L2_PORT_AGING_OUT (0x3358)
#define RTL839X_L2_PORT_AGING_OUT (0x3b74)
#define RTL838X_TBL_ACCESS_L2_CTRL (0x6900)
#define RTL839X_TBL_ACCESS_L2_CTRL (0x1180)
#define RTL838X_TBL_ACCESS_L2_DATA(idx) (0x6908 + ((idx) << 2))
#define RTL839X_TBL_ACCESS_L2_DATA(idx) (0x1184 + ((idx) << 2))
#define RTL838X_L2_TBL_FLUSH_CTRL (0x3370)
#define RTL839X_L2_TBL_FLUSH_CTRL (0x3ba0)
#define RTL838X_L2_PORT_NEW_SALRN(p) (0x328c + (((p >> 4) << 2)))
#define RTL839X_L2_PORT_NEW_SALRN(p) (0x38F0 + (((p >> 4) << 2)))
#define RTL838X_L2_PORT_NEW_SA_FWD(p) (0x3294 + (((p >> 4) << 2)))
#define RTL839X_L2_PORT_NEW_SA_FWD(p) (0x3900 + (((p >> 4) << 2)))
#define RTL838X_L2_PORT_SALRN(p) (0x328c + (((p >> 4) << 2)))
#define RTL839X_L2_PORT_SALRN(p) (0x38F0 + (((p >> 4) << 2)))
/* Port Mirroring */
#define RTL838X_MIR_CTRL(grp) (0x5D00 + (((grp) << 2)))
#define RTL838X_MIR_DPM_CTRL(grp) (0x5D20 + (((grp) << 2)))
#define RTL838X_MIR_SPM_CTRL(grp) (0x5D10 + (((grp) << 2)))
#define RTL839X_MIR_CTRL(grp) (0x2500 + (((grp) << 2)))
#define RTL839X_MIR_DPM_CTRL(grp) (0x2530 + (((grp) << 2)))
#define RTL839X_MIR_SPM_CTRL(grp) (0x2510 + (((grp) << 2)))
/* Storm control */
#define RTL838X_STORM_CTRL (0x4700)
#define RTL839X_STORM_CTRL (0x1800)
#define RTL838X_STORM_CTRL_LB_CTRL(p) (0x4884 + (((p) << 2)))
#define RTL838X_STORM_CTRL_BURST_PPS_0 (0x4874)
#define RTL838X_STORM_CTRL_BURST_PPS_1 (0x4878)
#define RTL838X_STORM_CTRL_BURST_0 (0x487c)
#define RTL838X_STORM_CTRL_BURST_1 (0x4880)
#define RTL838X_SCHED_CTRL (0xB980)
#define RTL838X_SCHED_LB_TICK_TKN_CTRL_0 (0xAD58)
#define RTL838X_SCHED_LB_TICK_TKN_CTRL_1 (0xAD5C)
#define RTL839X_SCHED_LB_TICK_TKN_CTRL_0 (0x1804)
#define RTL839X_SCHED_LB_TICK_TKN_CTRL_1 (0x1808)
#define RTL838X_SCHED_LB_THR (0xB984)
#define RTL838X_STORM_CTRL_PORT_BC_EXCEED (0x470C)
#define RTL838X_STORM_CTRL_PORT_MC_EXCEED (0x4710)
#define RTL838X_STORM_CTRL_PORT_UC_EXCEED (0x4714)
#define RTL839X_STORM_CTRL_PORT_BC_EXCEED(p) (0x180c + (((p >> 5) << 2)))
#define RTL839X_STORM_CTRL_PORT_MC_EXCEED(p) (0x1814 + (((p >> 5) << 2)))
#define RTL839X_STORM_CTRL_PORT_UC_EXCEED(p) (0x181c + (((p >> 5) << 2)))
#define RTL838X_STORM_CTRL_PORT_UC(p) (0x4718 + (((p) << 2)))
#define RTL838X_STORM_CTRL_PORT_MC(p) (0x478c + (((p) << 2)))
#define RTL838X_STORM_CTRL_PORT_BC(p) (0x4800 + (((p) << 2)))
/* Attack prevention */
#define RTL838X_ATK_PRVNT_PORT_EN (0x5B00)
#define RTL838X_ATK_PRVNT_CTRL (0x5B04)
#define RTL838X_ATK_PRVNT_ACT (0x5B08)
#define RTL838X_ATK_PRVNT_STS (0x5B1C)
enum phy_type {
PHY_NONE = 0,
PHY_RTL838X_SDS = 1,
PHY_RTL8218B_INT = 2,
PHY_RTL8218B_EXT = 3,
PHY_RTL8214FC = 4,
PHY_RTL839X_SDS = 5,
};
struct rtl838x_port {
bool enable;
u64 pm;
u16 pvid;
bool eee_enabled;
enum phy_type phy;
const struct dsa_port *dp;
};
struct rtl838x_vlan_info {
u64 untagged_ports;
u64 tagged_ports;
u8 profile_id;
bool hash_mc_fid;
bool hash_uc_fid;
u8 fid;
};
enum l2_entry_type {
L2_INVALID = 0,
L2_UNICAST = 1,
L2_MULTICAST = 2,
IP4_MULTICAST = 3,
IP6_MULTICAST = 4,
};
struct rtl838x_l2_entry {
u8 mac[6];
u16 vid;
u16 rvid;
u8 port;
bool valid;
enum l2_entry_type type;
bool is_static;
bool is_ip_mc;
bool is_ipv6_mc;
bool block_da;
bool block_sa;
bool suspended;
bool next_hop;
int age;
u16 mc_portmask_index;
};
struct rtl838x_switch_priv;
struct rtl838x_reg {
void (*mask_port_reg_be)(u64 clear, u64 set, int reg);
void (*set_port_reg_be)(u64 set, int reg);
u64 (*get_port_reg_be)(int reg);
void (*mask_port_reg_le)(u64 clear, u64 set, int reg);
void (*set_port_reg_le)(u64 set, int reg);
u64 (*get_port_reg_le)(int reg);
int stat_port_rst;
int stat_rst;
int (*stat_port_std_mib)(int p);
int (*port_iso_ctrl)(int p);
int l2_ctrl_0;
int l2_ctrl_1;
int l2_port_aging_out;
int smi_poll_ctrl;
int l2_tbl_flush_ctrl;
void (*exec_tbl0_cmd)(u32 cmd);
void (*exec_tbl1_cmd)(u32 cmd);
int (*tbl_access_data_0)(int i);
int isr_glb_src;
int isr_port_link_sts_chg;
int imr_port_link_sts_chg;
int imr_glb;
void (*vlan_tables_read)(u32 vlan, struct rtl838x_vlan_info *info);
void (*vlan_set_tagged)(u32 vlan, struct rtl838x_vlan_info *info);
void (*vlan_set_untagged)(u32 vlan, u64 portmask);
int (*mac_force_mode_ctrl)(int port);
int (*mac_port_ctrl)(int port);
int (*l2_port_new_salrn)(int port);
int (*l2_port_new_sa_fwd)(int port);
int (*mir_ctrl)(int group);
int (*mir_dpm)(int group);
int (*mir_spm)(int group);
int mac_link_sts;
int mac_link_dup_sts;
int (*mac_link_spd_sts)(int port);
int mac_rx_pause_sts;
int mac_tx_pause_sts;
u64 (*read_l2_entry_using_hash)(u32 hash, u32 position, struct rtl838x_l2_entry *e);
u64 (*read_cam)(int idx, struct rtl838x_l2_entry *e);
int (*vlan_profile)(int profile);
int (*vlan_port_egr_filter)(int port);
int (*vlan_port_igr_filter)(int port);
int (*vlan_port_pb)(int port);
int (*vlan_port_tag_sts_ctrl)(int port);
};
struct rtl838x_switch_priv {
/* Switch operation */
struct dsa_switch *ds;
struct device *dev;
u16 id;
u16 family_id;
char version;
struct rtl838x_port ports[54]; /* TODO: correct size! */
struct mutex reg_mutex;
int link_state_irq;
int mirror_group_ports[4];
struct mii_bus *mii_bus;
const struct rtl838x_reg *r;
u8 cpu_port;
u8 port_mask;
u32 fib_entries;
struct dentry *dbgfs_dir;
};
void rtl838x_dbgfs_init(struct rtl838x_switch_priv *priv);
#endif /* _RTL838X_H */

View File

@@ -0,0 +1,514 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl83xx.h"
extern struct mutex smi_lock;
static inline void rtl839x_mask_port_reg_be(u64 clear, u64 set, int reg)
{
sw_w32_mask((u32)(clear >> 32), (u32)(set >> 32), reg);
sw_w32_mask((u32)(clear & 0xffffffff), (u32)(set & 0xffffffff), reg + 4);
}
static inline u64 rtl839x_get_port_reg_be(int reg)
{
u64 v = sw_r32(reg);
v <<= 32;
v |= sw_r32(reg + 4);
return v;
}
static inline void rtl839x_set_port_reg_be(u64 set, int reg)
{
sw_w32(set >> 32, reg);
sw_w32(set & 0xffffffff, reg + 4);
}
static inline void rtl839x_mask_port_reg_le(u64 clear, u64 set, int reg)
{
sw_w32_mask((u32)clear, (u32)set, reg);
sw_w32_mask((u32)(clear >> 32), (u32)(set >> 32), reg + 4);
}
static inline void rtl839x_set_port_reg_le(u64 set, int reg)
{
sw_w32(set, reg);
sw_w32(set >> 32, reg + 4);
}
static inline u64 rtl839x_get_port_reg_le(int reg)
{
u64 v = sw_r32(reg + 4);
v <<= 32;
v |= sw_r32(reg);
return v;
}
static inline int rtl839x_stat_port_std_mib(int p)
{
return RTL839X_STAT_PORT_STD_MIB + (p << 8);
}
static inline int rtl839x_port_iso_ctrl(int p)
{
return RTL839X_PORT_ISO_CTRL(p);
}
static inline void rtl839x_exec_tbl0_cmd(u32 cmd)
{
sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_0);
do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_0) & BIT(16));
}
static inline void rtl839x_exec_tbl1_cmd(u32 cmd)
{
sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_1);
do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_1) & BIT(16));
}
static inline int rtl839x_tbl_access_data_0(int i)
{
return RTL839X_TBL_ACCESS_DATA_0(i);
}
static void rtl839x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 cmd;
u64 v;
u32 u, w;
cmd = BIT(16) /* Execute cmd */
| 0 << 15 /* Read */
| 0 << 12 /* Table type 0b000 */
| (vlan & 0xfff);
rtl839x_exec_tbl0_cmd(cmd);
v = sw_r32(RTL838X_TBL_ACCESS_DATA_0(0));
v <<= 32;
u = sw_r32(RTL838X_TBL_ACCESS_DATA_0(1));
v |= u;
info->tagged_ports = v >> 11;
w = sw_r32(RTL838X_TBL_ACCESS_DATA_0(2));
info->profile_id = w >> 30 | ((u & 1) << 2);
info->hash_mc_fid = !!(u & 2);
info->hash_uc_fid = !!(u & 4);
info->fid = (u >> 3) & 0xff;
cmd = BIT(16) /* Execute cmd */
| 0 << 15 /* Read */
| 0 << 12 /* Table type 0b000 */
| (vlan & 0xfff);
rtl839x_exec_tbl1_cmd(cmd);
v = sw_r32(RTL838X_TBL_ACCESS_DATA_1(0));
v <<= 32;
v |= sw_r32(RTL838X_TBL_ACCESS_DATA_1(1));
info->untagged_ports = v >> 11;
}
static void rtl839x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 cmd = BIT(16) /* Execute cmd */
| BIT(15) /* Write */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
u32 w;
u64 v = info->tagged_ports << 11;
v |= info->profile_id >> 2;
v |= info->hash_mc_fid ? 2 : 0;
v |= info->hash_uc_fid ? 4 : 0;
v |= ((u32)info->fid) << 3;
rtl839x_set_port_reg_be(v, RTL838X_TBL_ACCESS_DATA_0(0));
w = info->profile_id;
sw_w32(w << 30, RTL838X_TBL_ACCESS_DATA_0(2));
rtl839x_exec_tbl0_cmd(cmd);
}
static void rtl839x_vlan_set_untagged(u32 vlan, u64 portmask)
{
u32 cmd = BIT(16) /* Execute cmd */
| BIT(15) /* Write */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
rtl839x_set_port_reg_be(portmask << 11, RTL838X_TBL_ACCESS_DATA_1(0));
rtl839x_exec_tbl1_cmd(cmd);
}
static inline int rtl839x_mac_force_mode_ctrl(int p)
{
return RTL839X_MAC_FORCE_MODE_CTRL + (p << 2);
}
static inline int rtl839x_mac_port_ctrl(int p)
{
return RTL839X_MAC_PORT_CTRL(p);
}
static inline int rtl839x_l2_port_new_salrn(int p)
{
return RTL839X_L2_PORT_NEW_SALRN(p);
}
static inline int rtl839x_l2_port_new_sa_fwd(int p)
{
return RTL839X_L2_PORT_NEW_SA_FWD(p);
}
static inline int rtl839x_mir_ctrl(int group)
{
return RTL839X_MIR_CTRL(group);
}
static inline int rtl839x_mir_dpm(int group)
{
return RTL839X_MIR_DPM_CTRL(group);
}
static inline int rtl839x_mir_spm(int group)
{
return RTL839X_MIR_SPM_CTRL(group);
}
static inline int rtl839x_mac_link_spd_sts(int p)
{
return RTL839X_MAC_LINK_SPD_STS(p);
}
static u64 rtl839x_read_l2_entry_using_hash(u32 hash, u32 position, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
/* Search in SRAM, with hash and at position in hash bucket (0-3) */
u32 idx = (0 << 14) | (hash << 2) | position;
u32 cmd = BIT(17) /* Execute cmd */
| 0 << 16 /* Read */
| 0 << 14 /* Table type 0b00 */
| (idx & 0x3fff);
sw_w32(cmd, RTL839X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL839X_TBL_ACCESS_L2_CTRL) & BIT(17));
r[0] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(0));
r[1] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(1));
r[2] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(2));
/* Table contains different entry types, we need to identify the right one:
* Check for MC entries, first
*/
e->is_ip_mc = !!(r[2] & BIT(31));
e->is_ipv6_mc = !!(r[2] & BIT(30));
e->type = L2_INVALID;
if (!e->is_ip_mc) {
e->mac[0] = (r[0] >> 12);
e->mac[1] = (r[0] >> 4);
e->mac[2] = ((r[1] >> 28) | (r[0] << 4));
e->mac[3] = (r[1] >> 20);
e->mac[4] = (r[1] >> 12);
e->mac[5] = (r[1] >> 4);
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
e->is_static = !!((r[2] >> 18) & 1);
e->vid = (r[2] >> 4) & 0xfff;
e->rvid = (r[0] >> 20) & 0xfff;
e->port = (r[2] >> 24) & 0x3f;
e->block_da = !!(r[2] & BIT(19));
e->block_sa = !!(r[2] & BIT(20));
e->suspended = !!(r[2] & BIT(17));
e->next_hop = !!(r[2] & BIT(16));
if (e->next_hop)
pr_debug("Found next hop entry, need to read data\n");
e->age = (r[2] >> 21) & 3;
e->valid = true;
if (!(r[2] & 0xc0fd0000)) /* Check for valid entry */
e->valid = false;
else
e->type = L2_UNICAST;
} else {
e->valid = true;
e->type = L2_MULTICAST;
e->mc_portmask_index = (r[2]>>6) & 0xfff;
}
}
if (e->is_ip_mc) {
e->valid = true;
e->type = IP4_MULTICAST;
}
if (e->is_ipv6_mc) {
e->valid = true;
e->type = IP6_MULTICAST;
}
entry = (((u64) r[0]) << 12) | ((r[1] & 0xfffffff0) << 12) | ((r[2] >> 4) & 0xfff);
return entry;
}
static u64 rtl839x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
u32 cmd = BIT(17) /* Execute cmd */
| 0 << 16 /* Read */
| BIT(14) /* Table type 0b01 */
| (idx & 0x3f);
sw_w32(cmd, RTL839X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL839X_TBL_ACCESS_L2_CTRL) & BIT(17));
r[0] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(0));
r[1] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(1));
r[2] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(2));
e->mac[0] = (r[0] >> 12);
e->mac[1] = (r[0] >> 4);
e->mac[2] = ((r[1] >> 28) | (r[0] << 4));
e->mac[3] = (r[1] >> 20);
e->mac[4] = (r[1] >> 12);
e->mac[5] = (r[1] >> 4);
e->is_static = !!((r[2] >> 18) & 1);
e->vid = (r[2] >> 4) & 0xfff;
e->rvid = (r[0] >> 20) & 0xfff;
e->port = (r[2] >> 24) & 0x3f;
e->valid = true;
if (!(r[2] & 0x10fd0000)) /* Check for invalid entry */
e->valid = false;
if (e->valid)
pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
entry = (((u64) r[0]) << 12) | ((r[1] & 0xfffffff0) << 12) | ((r[2] >> 4) & 0xfff);
return entry;
}
static inline int rtl839x_vlan_profile(int profile)
{
return RTL839X_VLAN_PROFILE(profile);
}
static inline int rtl839x_vlan_port_egr_filter(int port)
{
return RTL839X_VLAN_PORT_EGR_FLTR(port);
}
static inline int rtl839x_vlan_port_igr_filter(int port)
{
return RTL839X_VLAN_PORT_IGR_FLTR(port);
}
static inline int rtl839x_vlan_port_pb(int port)
{
return RTL839X_VLAN_PORT_PB_VLAN(port);
}
static inline int rtl839x_vlan_port_tag_sts_ctrl(int port)
{
return RTL839X_VLAN_PORT_TAG_STS_CTRL(port);
}
const struct rtl838x_reg rtl839x_reg = {
.mask_port_reg_be = rtl839x_mask_port_reg_be,
.set_port_reg_be = rtl839x_set_port_reg_be,
.get_port_reg_be = rtl839x_get_port_reg_be,
.mask_port_reg_le = rtl839x_mask_port_reg_le,
.set_port_reg_le = rtl839x_set_port_reg_le,
.get_port_reg_le = rtl839x_get_port_reg_le,
.stat_port_rst = RTL839X_STAT_PORT_RST,
.stat_rst = RTL839X_STAT_RST,
.stat_port_std_mib = rtl839x_stat_port_std_mib,
.port_iso_ctrl = rtl839x_port_iso_ctrl,
.l2_ctrl_0 = RTL839X_L2_CTRL_0,
.l2_ctrl_1 = RTL839X_L2_CTRL_1,
.l2_port_aging_out = RTL839X_L2_PORT_AGING_OUT,
.smi_poll_ctrl = RTL839X_SMI_PORT_POLLING_CTRL,
.l2_tbl_flush_ctrl = RTL839X_L2_TBL_FLUSH_CTRL,
.exec_tbl0_cmd = rtl839x_exec_tbl0_cmd,
.exec_tbl1_cmd = rtl839x_exec_tbl1_cmd,
.tbl_access_data_0 = rtl839x_tbl_access_data_0,
.isr_glb_src = RTL839X_ISR_GLB_SRC,
.isr_port_link_sts_chg = RTL839X_ISR_PORT_LINK_STS_CHG,
.imr_port_link_sts_chg = RTL839X_IMR_PORT_LINK_STS_CHG,
.imr_glb = RTL839X_IMR_GLB,
.vlan_tables_read = rtl839x_vlan_tables_read,
.vlan_set_tagged = rtl839x_vlan_set_tagged,
.vlan_set_untagged = rtl839x_vlan_set_untagged,
.mac_force_mode_ctrl = rtl839x_mac_force_mode_ctrl,
.mac_port_ctrl = rtl839x_mac_port_ctrl,
.l2_port_new_salrn = rtl839x_l2_port_new_salrn,
.l2_port_new_sa_fwd = rtl839x_l2_port_new_sa_fwd,
.mir_ctrl = rtl839x_mir_ctrl,
.mir_dpm = rtl839x_mir_dpm,
.mir_spm = rtl839x_mir_spm,
.mac_link_sts = RTL839X_MAC_LINK_STS,
.mac_link_dup_sts = RTL839X_MAC_LINK_DUP_STS,
.mac_link_spd_sts = rtl839x_mac_link_spd_sts,
.mac_rx_pause_sts = RTL839X_MAC_RX_PAUSE_STS,
.mac_tx_pause_sts = RTL839X_MAC_TX_PAUSE_STS,
.read_l2_entry_using_hash = rtl839x_read_l2_entry_using_hash,
.read_cam = rtl839x_read_cam,
.vlan_profile = rtl839x_vlan_profile,
.vlan_port_egr_filter = rtl839x_vlan_port_egr_filter,
.vlan_port_igr_filter = rtl839x_vlan_port_igr_filter,
.vlan_port_pb = rtl839x_vlan_port_pb,
.vlan_port_tag_sts_ctrl = rtl839x_vlan_port_tag_sts_ctrl,
};
irqreturn_t rtl839x_switch_irq(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
u32 status = sw_r32(RTL839X_ISR_GLB_SRC);
u64 ports = rtl839x_get_port_reg_le(RTL839X_ISR_PORT_LINK_STS_CHG);
u64 link;
int i;
/* Clear status */
rtl839x_set_port_reg_le(ports, RTL839X_ISR_PORT_LINK_STS_CHG);
pr_debug("RTL8390 Link change: status: %x, ports %llx\n", status, ports);
for (i = 0; i < 52; i++) {
if (ports & (1ULL << i)) {
link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS);
if (link & (1ULL << i))
dsa_port_phylink_mac_change(ds, i, true);
else
dsa_port_phylink_mac_change(ds, i, false);
}
}
return IRQ_HANDLED;
}
// TODO: unused
int rtl8390_sds_power(int mac, int val)
{
u32 offset = (mac == 48) ? 0x0 : 0x100;
u32 mode = val ? 0 : 1;
pr_debug("In %s: mac %d, set %d\n", __func__, mac, val);
if ((mac != 48) && (mac != 49)) {
pr_err("%s: not an SFP port: %d\n", __func__, mac);
return -1;
}
// Set bit 1003. 1000 starts at 7c
sw_w32_mask(BIT(11), mode << 11, RTL839X_SDS12_13_PWR0 + offset);
return 0;
}
int rtl839x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
u32 v;
if (port > 63 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
sw_w32_mask(0xffff0000, port << 16, RTL839X_PHYREG_DATA_CTRL);
v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23;
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
sw_w32(0x1ff, RTL839X_PHYREG_CTRL);
v |= 1;
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
do {
} while (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x1);
*val = sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff;
mutex_unlock(&smi_lock);
return 0;
}
int rtl839x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
u32 v;
int err = 0;
val &= 0xffff;
if (port > 63 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
/* Clear both port registers */
sw_w32(0, RTL839X_PHYREG_PORT_CTRL(0));
sw_w32(0, RTL839X_PHYREG_PORT_CTRL(0) + 4);
sw_w32_mask(0, BIT(port), RTL839X_PHYREG_PORT_CTRL(port));
sw_w32_mask(0xffff0000, val << 16, RTL839X_PHYREG_DATA_CTRL);
v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23;
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
sw_w32(0x1ff, RTL839X_PHYREG_CTRL);
v |= BIT(3) | 1; /* Write operation and execute */
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
do {
} while (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x1);
if (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x2)
err = -EIO;
mutex_unlock(&smi_lock);
return err;
}
void rtl8390_get_version(struct rtl838x_switch_priv *priv)
{
u32 info;
sw_w32_mask(0xf << 28, 0xa << 28, RTL839X_CHIP_INFO);
info = sw_r32(RTL839X_CHIP_INFO);
pr_debug("Chip-Info: %x\n", info);
priv->version = RTL8390_VERSION_A;
}
u32 rtl839x_hash(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 h1, h2, h;
if (sw_r32(priv->r->l2_ctrl_0) & 1) {
h1 = (u32) (((seed >> 60) & 0x3f) ^ ((seed >> 54) & 0x3f)
^ ((seed >> 36) & 0x3f) ^ ((seed >> 30) & 0x3f)
^ ((seed >> 12) & 0x3f) ^ ((seed >> 6) & 0x3f));
h2 = (u32) (((seed >> 48) & 0x3f) ^ ((seed >> 42) & 0x3f)
^ ((seed >> 24) & 0x3f) ^ ((seed >> 18) & 0x3f)
^ (seed & 0x3f));
h = (h1 << 6) | h2;
} else {
h = (seed >> 60)
^ ((((seed >> 48) & 0x3f) << 6) | ((seed >> 54) & 0x3f))
^ ((seed >> 36) & 0xfff) ^ ((seed >> 24) & 0xfff)
^ ((seed >> 12) & 0xfff) ^ (seed & 0xfff);
}
return h;
}
void rtl839x_vlan_profile_dump(int index)
{
u32 profile, profile1;
if (index < 0 || index > 7)
return;
profile1 = sw_r32(RTL839X_VLAN_PROFILE(index) + 4);
profile = sw_r32(RTL839X_VLAN_PROFILE(index));
pr_debug("VLAN %d: L2 learning: %d, L2 Unknown MultiCast Field %x, \
IPv4 Unknown MultiCast Field %x, IPv6 Unknown MultiCast Field: %x",
index, profile & 1, (profile >> 1) & 0xfff, (profile >> 13) & 0xfff,
(profile1) & 0xfff);
}

View File

@@ -0,0 +1,44 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef _NET_DSA_RTL83XX_H
#define _NET_DSA_RTL83XX_H
#include <net/dsa.h>
#include "rtl838x.h"
#define RTL8380_VERSION_A 'A'
#define RTL8390_VERSION_A 'A'
#define RTL8380_VERSION_B 'B'
struct fdb_update_work {
struct work_struct work;
struct net_device *ndev;
u64 macs[];
};
#define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
struct rtl83xx_mib_desc {
unsigned int size;
unsigned int offset;
const char *name;
};
void __init rtl83xx_storm_control_init(struct rtl838x_switch_priv *priv);
/* RTL838x-specific */
u32 rtl838x_hash(struct rtl838x_switch_priv *priv, u64 seed);
irqreturn_t rtl838x_switch_irq(int irq, void *dev_id);
void rtl8380_get_version(struct rtl838x_switch_priv *priv);
void rtl838x_vlan_profile_dump(int index);
int rtl83xx_dsa_phy_read(struct dsa_switch *ds, int phy_addr, int phy_reg);
/* RTL839x-specific */
u32 rtl839x_hash(struct rtl838x_switch_priv *priv, u64 seed);
irqreturn_t rtl839x_switch_irq(int irq, void *dev_id);
void rtl8390_get_version(struct rtl838x_switch_priv *priv);
void rtl839x_vlan_profile_dump(int index);
int rtl83xx_dsa_phy_write(struct dsa_switch *ds, int phy_addr, int phy_reg, u16 val);
#endif /* _NET_DSA_RTL83XX_H */

View File

@@ -0,0 +1,64 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl83xx.h"
static void rtl83xx_storm_enable(struct rtl838x_switch_priv *priv, int port, bool enable)
{
// Enable Storm control for that port for UC, MC, and BC
if (enable)
sw_w32(0x7, RTL838X_STORM_CTRL_LB_CTRL(port));
else
sw_w32(0x0, RTL838X_STORM_CTRL_LB_CTRL(port));
}
void __init rtl83xx_storm_control_init(struct rtl838x_switch_priv *priv)
{
int i;
pr_debug("Enabling Storm control\n");
// TICK_PERIOD_PPS
if (priv->id == 0x8380)
sw_w32_mask(0x3ff << 20, 434 << 20, RTL838X_SCHED_LB_TICK_TKN_CTRL_0);
// Set burst rate
sw_w32(0x00008000, RTL838X_STORM_CTRL_BURST_0); // UC
sw_w32(0x80008000, RTL838X_STORM_CTRL_BURST_1); // MC and BC
// Set burst Packets per Second to 32
sw_w32(0x00000020, RTL838X_STORM_CTRL_BURST_PPS_0); // UC
sw_w32(0x00200020, RTL838X_STORM_CTRL_BURST_PPS_1); // MC and BC
// Include IFG in storm control
sw_w32_mask(0, BIT(6), RTL838X_STORM_CTRL);
// Rate control is based on bytes/s (0 = packets)
sw_w32_mask(0, BIT(5), RTL838X_STORM_CTRL);
// Bandwidth control includes preamble and IFG (10 Bytes)
sw_w32_mask(0, 1, RTL838X_SCHED_CTRL);
// On SoCs except RTL8382M, set burst size of port egress
if (priv->id != 0x8382)
sw_w32_mask(0xffff, 0x800, RTL838X_SCHED_LB_THR);
/* Enable storm control on all ports with a PHY and limit rates,
* for UC and MC for both known and unknown addresses */
for (i = 0; i < priv->cpu_port; i++) {
if (priv->ports[i].phy) {
sw_w32(BIT(18) | 0x8000, RTL838X_STORM_CTRL_PORT_UC(i));
sw_w32(BIT(18) | 0x8000, RTL838X_STORM_CTRL_PORT_MC(i));
sw_w32(0x000, RTL838X_STORM_CTRL_PORT_BC(i));
rtl83xx_storm_enable(priv, i, true);
}
}
// Attack prevention, enable all attack prevention measures
//sw_w32(0x1ffff, RTL838X_ATK_PRVNT_CTRL);
/* Attack prevention, drop (bit = 0) problematic packets on all ports.
* Setting bit = 1 means: trap to CPU
*/
//sw_w32(0, RTL838X_ATK_PRVNT_ACT);
// Enable attack prevention on all ports
//sw_w32(0x0fffffff, RTL838X_ATK_PRVNT_PORT_EN);
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,279 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef _RTL838X_ETH_H
#define _RTL838X_ETH_H
/*
* Register definition
*/
#define RTL838X_CPU_PORT 28
#define RTL839X_CPU_PORT 52
#define RTL838X_MAC_PORT_CTRL (0xd560)
#define RTL839X_MAC_PORT_CTRL (0x8004)
#define RTL838X_DMA_IF_INTR_STS (0x9f54)
#define RTL839X_DMA_IF_INTR_STS (0x7868)
#define RTL838X_DMA_IF_INTR_MSK (0x9f50)
#define RTL839X_DMA_IF_INTR_MSK (0x7864)
#define RTL838X_DMA_IF_CTRL (0x9f58)
#define RTL839X_DMA_IF_CTRL (0x786c)
#define RTL838X_RST_GLB_CTRL_0 (0x003c)
#define RTL838X_MAC_FORCE_MODE_CTRL (0xa104)
#define RTL839X_MAC_FORCE_MODE_CTRL (0x02bc)
/* MAC address settings */
#define RTL838X_MAC (0xa9ec)
#define RTL839X_MAC (0x02b4)
#define RTL838X_MAC_ALE (0x6b04)
#define RTL838X_MAC2 (0xa320)
#define RTL838X_DMA_RX_BASE (0x9f00)
#define RTL839X_DMA_RX_BASE (0x780c)
#define RTL838X_DMA_TX_BASE (0x9f40)
#define RTL839X_DMA_TX_BASE (0x784c)
#define RTL838X_DMA_IF_RX_RING_SIZE (0xB7E4)
#define RTL839X_DMA_IF_RX_RING_SIZE (0x6038)
#define RTL838X_DMA_IF_RX_RING_CNTR (0xB7E8)
#define RTL839X_DMA_IF_RX_RING_CNTR (0x603c)
#define RTL838X_DMA_IF_RX_CUR (0x9F20)
#define RTL839X_DMA_IF_RX_CUR (0x782c)
#define RTL838X_DMY_REG31 (0x3b28)
#define RTL838X_SDS_MODE_SEL (0x0028)
#define RTL838X_SDS_CFG_REG (0x0034)
#define RTL838X_INT_MODE_CTRL (0x005c)
#define RTL838X_CHIP_INFO (0x00d8)
#define RTL838X_SDS4_REG28 (0xef80)
#define RTL838X_SDS4_DUMMY0 (0xef8c)
#define RTL838X_SDS5_EXT_REG6 (0xf18c)
#define RTL838X_PORT_ISO_CTRL(port) (0x4100 + ((port) << 2))
#define RTL838X_STAT_PORT_STD_MIB(port) (0x1200 + (((port) << 8)))
#define RTL838X_STAT_RST (0x3100)
#define RTL838X_STAT_CTRL (0x3108)
/* Registers of the internal Serdes of the 8380 */
#define MAPLE_SDS4_REG0r RTL838X_SDS4_REG28
#define MAPLE_SDS5_REG0r (RTL838X_SDS4_REG28 + 0x100)
#define MAPLE_SDS4_REG3r RTL838X_SDS4_DUMMY0
#define MAPLE_SDS5_REG3r (RTL838X_SDS4_REG28 + 0x100)
#define MAPLE_SDS4_FIB_REG0r (RTL838X_SDS4_REG28 + 0x880)
#define MAPLE_SDS5_FIB_REG0r (RTL838X_SDS4_REG28 + 0x980)
/* VLAN registers */
#define RTL838X_VLAN_PROFILE(idx) (0x3A88 + ((idx) << 2))
#define RTL838X_VLAN_PORT_EGR_FLTR (0x3A84)
#define RTL838X_VLAN_PORT_PB_VLAN(port) (0x3C00 + ((port) << 2))
#define RTL838X_VLAN_PORT_IGR_FLTR_0 (0x3A7C)
#define RTL838X_VLAN_PORT_IGR_FLTR_1 (0x3A7C + 4)
#define RTL838X_TBL_ACCESS_CTRL_0 (0x6914)
#define RTL838X_TBL_ACCESS_DATA_0(idx) (0x6918 + ((idx) << 2))
#define RTL838X_TBL_ACCESS_CTRL_1 (0xA4C8)
#define RTL838X_TBL_ACCESS_DATA_1(idx) (0xA4CC + ((idx) << 2))
#define RTL839X_TBL_ACCESS_L2_CTRL (0x1180)
#define RTL839X_TBL_ACCESS_L2_DATA(idx) (0x1184 + ((idx) << 2))
/* MAC handling */
#define RTL838X_MAC_LINK_STS (0xa188)
#define RTL839X_MAC_LINK_STS (0x0390)
#define RTL838X_MAC_LINK_SPD_STS (0xa190)
#define RTL839X_MAC_LINK_SPD_STS (0x03a0)
#define RTL838X_MAC_LINK_DUP_STS (0xa19c)
#define RTL839X_MAC_LINK_DUP_STS (0x03b0)
// TODO: RTL8390_MAC_LINK_MEDIA_STS_ADDR ???
#define RTL838X_MAC_TX_PAUSE_STS (0xa1a0)
#define RTL839X_MAC_TX_PAUSE_STS (0x03b8)
#define RTL838X_MAC_RX_PAUSE_STS (0xa1a4)
#define RTL839X_MAC_RX_PAUSE_STS (0x03c0)
#define RTL838X_EEE_TX_TIMER_GIGA_CTRL (0xaa04)
#define RTL838X_EEE_TX_TIMER_GELITE_CTRL (0xaa08)
#define RTL839X_MAC_GLB_CTRL (0x02a8)
#define RTL839X_SCHED_LB_TICK_TKN_CTRL (0x60f8)
#define RTL838X_L2_TBL_FLUSH_CTRL (0x3370)
#define RTL839X_L2_TBL_FLUSH_CTRL (0x3ba0)
/* MAC link state bits */
#define FORCE_EN (1 << 0)
#define FORCE_LINK_EN (1 << 1)
#define NWAY_EN (1 << 2)
#define DUPLX_MODE (1 << 3)
#define TX_PAUSE_EN (1 << 6)
#define RX_PAUSE_EN (1 << 7)
/* RTL839X L2 Notification DMA interface */
#define RTL839X_DMA_IF_NBUF_BASE_DESC_ADDR_CTRL (0x785C)
#define RTL839X_L2_NOTIFICATION_CTRL (0x7808)
#define RTL838X_L2_CTRL_0 (0x3200)
#define RTL839X_L2_CTRL_0 (0x3800)
/* TRAPPING to CPU-PORT */
#define RTL838X_SPCL_TRAP_IGMP_CTRL (0x6984)
#define RTL839X_SPCL_TRAP_IGMP_CTRL (0x1058)
#define RTL838X_RMA_CTRL_0 (0x4300)
#define RTL838X_RMA_CTRL_1 (0x4304)
#define RTL839X_RMA_CTRL_0 (0x1200)
#define RTL839X_RMA_CTRL_1 (0x1204)
#define RTL839X_RMA_CTRL_2 (0x1208)
#define RTL839X_RMA_CTRL_3 (0x120C)
/* Registers of the internal Serdes of the 8390 */
#define RTL839X_SDS12_13_XSG0 (0xB800)
inline int rtl838x_mac_port_ctrl(int p)
{
return RTL838X_MAC_PORT_CTRL + (p << 7);
}
inline int rtl839x_mac_port_ctrl(int p)
{
return RTL839X_MAC_PORT_CTRL + (p << 7);
}
static inline int rtl838x_mac_force_mode_ctrl(int p)
{
return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
}
static inline int rtl839x_mac_force_mode_ctrl(int p)
{
return RTL839X_MAC_FORCE_MODE_CTRL + (p << 2);
}
inline int rtl838x_dma_rx_base(int i)
{
return RTL838X_DMA_RX_BASE + (i << 2);
}
inline int rtl839x_dma_rx_base(int i)
{
return RTL839X_DMA_RX_BASE + (i << 2);
}
inline int rtl838x_dma_tx_base(int i)
{
return RTL838X_DMA_TX_BASE + (i << 2);
}
inline int rtl839x_dma_tx_base(int i)
{
return RTL839X_DMA_TX_BASE + (i << 2);
}
inline int rtl838x_dma_if_rx_ring_size(int i)
{
return RTL838X_DMA_IF_RX_RING_SIZE + ((i >> 3) << 2);
}
inline int rtl839x_dma_if_rx_ring_size(int i)
{
return RTL839X_DMA_IF_RX_RING_SIZE + ((i >> 3) << 2);
}
inline int rtl838x_dma_if_rx_ring_cntr(int i)
{
return RTL838X_DMA_IF_RX_RING_CNTR + ((i >> 3) << 2);
}
inline int rtl839x_dma_if_rx_ring_cntr(int i)
{
return RTL839X_DMA_IF_RX_RING_CNTR + ((i >> 3) << 2);
}
inline int rtl838x_dma_if_rx_cur(int i)
{
return RTL838X_DMA_IF_RX_CUR + (i << 2);
}
inline int rtl839x_dma_if_rx_cur(int i)
{
return RTL839X_DMA_IF_RX_CUR + (i << 2);
}
inline u32 rtl838x_get_mac_link_sts(int port)
{
return (sw_r32(RTL838X_MAC_LINK_STS) & (1 << port));
}
inline u32 rtl839x_get_mac_link_sts(int p)
{
return (sw_r32(RTL839X_MAC_LINK_STS + ((p >> 5) << 2)) & (1 << p));
}
inline u32 rtl838x_get_mac_link_dup_sts(int port)
{
return (sw_r32(RTL838X_MAC_LINK_DUP_STS) & (1 << port));
}
inline u32 rtl839x_get_mac_link_dup_sts(int p)
{
return (sw_r32(RTL839X_MAC_LINK_DUP_STS + ((p >> 5) << 2)) & (1 << p));
}
inline u32 rtl838x_get_mac_link_spd_sts(int port)
{
int r = RTL838X_MAC_LINK_SPD_STS + ((port >> 4) << 2);
u32 speed = sw_r32(r);
speed >>= (port % 16) << 1;
return (speed & 0x3);
}
inline u32 rtl839x_get_mac_link_spd_sts(int port)
{
int r = RTL839X_MAC_LINK_SPD_STS + ((port >> 4) << 2);
u32 speed = sw_r32(r);
speed >>= (port % 16) << 1;
return (speed & 0x3);
}
inline u32 rtl838x_get_mac_rx_pause_sts(int port)
{
return (sw_r32(RTL838X_MAC_RX_PAUSE_STS) & (1 << port));
}
inline u32 rtl839x_get_mac_rx_pause_sts(int p)
{
return (sw_r32(RTL839X_MAC_RX_PAUSE_STS + ((p >> 5) << 2)) & (1 << p));
}
inline u32 rtl838x_get_mac_tx_pause_sts(int port)
{
return (sw_r32(RTL838X_MAC_TX_PAUSE_STS) & (1 << port));
}
inline u32 rtl839x_get_mac_tx_pause_sts(int p)
{
return (sw_r32(RTL839X_MAC_TX_PAUSE_STS + ((p >> 5) << 2)) & (1 << p));
}
struct rtl838x_reg {
int (*mac_port_ctrl)(int port);
int dma_if_intr_sts;
int dma_if_intr_msk;
int dma_if_ctrl;
int (*mac_force_mode_ctrl)(int port);
int (*dma_rx_base)(int ring);
int (*dma_tx_base)(int ring);
int (*dma_if_rx_ring_size)(int ring);
int (*dma_if_rx_ring_cntr)(int ring);
int (*dma_if_rx_cur)(int ring);
int rst_glb_ctrl;
u32 (*get_mac_link_sts)(int port);
u32 (*get_mac_link_dup_sts)(int port);
u32 (*get_mac_link_spd_sts)(int port);
u32 (*get_mac_rx_pause_sts)(int port);
u32 (*get_mac_tx_pause_sts)(int port);
int mac;
int l2_tbl_flush_ctrl;
};
int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val);
int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val);
int rtl839x_write_phy(u32 port, u32 page, u32 reg, u32 val);
int rtl839x_read_phy(u32 port, u32 page, u32 reg, u32 *val);
#endif /* _RTL838X_ETH_H */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,40 @@
// SPDX-License-Identifier: GPL-2.0-only
// TODO: not really used
struct rtl838x_phy_priv {
char *name;
};
struct __attribute__ ((__packed__)) part {
uint16_t start;
uint8_t wordsize;
uint8_t words;
};
struct __attribute__ ((__packed__)) fw_header {
uint32_t magic;
uint32_t phy;
uint32_t checksum;
uint32_t version;
struct part parts[10];
};
// TODO: fixed path?
#define FIRMWARE_838X_8380_1 "rtl838x_phy/rtl838x_8380.fw"
#define FIRMWARE_838X_8214FC_1 "rtl838x_phy/rtl838x_8214fc.fw"
#define FIRMWARE_838X_8218b_1 "rtl838x_phy/rtl838x_8218b.fw"
/* External RTL8218B and RTL8214FC IDs are identical */
#define PHY_ID_RTL8214C 0x001cc942
#define PHY_ID_RTL8214FC 0x001cc981
#define PHY_ID_RTL8218B_E 0x001cc981
#define PHY_ID_RTL8218B_I 0x001cca40
#define PHY_ID_RTL8390_GENERIC 0x001ccab0
#define PHY_ID_RTL8393_I 0x001c8393
#define RTL839X_SDS12_13_XSG0 (0xB800)
#define RTL838X_SDS_MODE_SEL (0x0028)
#define RTL838X_SDS_CFG_REG (0x0034)
#define RTL838X_INT_MODE_CTRL (0x005c)
#define RTL838X_DMY_REG31 (0x3b28)